You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

322 lines
8.8 KiB

#include "yolo_v2_class.hpp"
#include "network.h"
extern "C" {
#include "detection_layer.h"
#include "region_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
#include "image.h"
#include "demo.h"
#include "option_list.h"
#include "stb_image.h"
}
//#include <sys/time.h>
#include <vector>
#include <iostream>
#include <algorithm>
#define FRAMES 3
#ifdef GPU
void check_cuda(cudaError_t status) {
if (status != cudaSuccess) {
const char *s = cudaGetErrorString(status);
printf("CUDA Error Prev: %s\n", s);
}
}
#endif
struct detector_gpu_t {
float **probs;
box *boxes;
network net;
image images[FRAMES];
float *avg;
float *predictions[FRAMES];
int demo_index;
unsigned int *track_id;
};
YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) : cur_gpu_id(gpu_id)
{
wait_stream = 0;
int old_gpu_index;
#ifdef GPU
check_cuda( cudaGetDevice(&old_gpu_index) );
#endif
detector_gpu_ptr = std::make_shared<detector_gpu_t>();
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
#ifdef GPU
//check_cuda( cudaSetDevice(cur_gpu_id) );
cuda_set_device(cur_gpu_id);
printf(" Used GPU %d \n", cur_gpu_id);
#endif
network &net = detector_gpu.net;
net.gpu_index = cur_gpu_id;
//gpu_index = i;
char *cfgfile = const_cast<char *>(cfg_filename.data());
char *weightfile = const_cast<char *>(weight_filename.data());
net = parse_network_cfg_custom(cfgfile, 1);
if (weightfile) {
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
net.gpu_index = cur_gpu_id;
layer l = net.layers[net.n - 1];
int j;
detector_gpu.avg = (float *)calloc(l.outputs, sizeof(float));
for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float));
for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3);
detector_gpu.boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float));
detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int));
for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1;
#ifdef GPU
check_cuda( cudaSetDevice(old_gpu_index) );
#endif
}
YOLODLL_API Detector::~Detector()
{
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
free(detector_gpu.track_id);
free(detector_gpu.avg);
for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data);
for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]);
free(detector_gpu.boxes);
free(detector_gpu.probs);
int old_gpu_index;
#ifdef GPU
cudaGetDevice(&old_gpu_index);
//cudaSetDevice(detector_gpu.net.gpu_index);
cuda_set_device(detector_gpu.net.gpu_index);
#endif
free_network(detector_gpu.net);
#ifdef GPU
cudaSetDevice(old_gpu_index);
#endif
}
YOLODLL_API int Detector::get_net_width() const {
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
return detector_gpu.net.w;
}
YOLODLL_API int Detector::get_net_height() const {
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
return detector_gpu.net.h;
}
YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh, bool use_mean)
{
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
*image_ptr = load_image(image_filename);
return detect(*image_ptr, thresh, use_mean);
}
static image load_image_stb(char *filename, int channels)
{
int w, h, c;
unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
if (!data)
throw std::runtime_error("file not found");
if (channels) c = channels;
int i, j, k;
image im = make_image(w, h, c);
for (k = 0; k < c; ++k) {
for (j = 0; j < h; ++j) {
for (i = 0; i < w; ++i) {
int dst_index = i + w*j + w*h*k;
int src_index = k + c*i + c*w*j;
im.data[dst_index] = (float)data[src_index] / 255.;
}
}
}
free(data);
return im;
}
YOLODLL_API image_t Detector::load_image(std::string image_filename)
{
char *input = const_cast<char *>(image_filename.data());
image im = load_image_stb(input, 3);
image_t img;
img.c = im.c;
img.data = im.data;
img.h = im.h;
img.w = im.w;
return img;
}
YOLODLL_API void Detector::free_image(image_t m)
{
if (m.data) {
free(m.data);
}
}
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean)
{
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
network &net = detector_gpu.net;
int old_gpu_index;
#ifdef GPU
cudaGetDevice(&old_gpu_index);
if(cur_gpu_id != old_gpu_index)
cudaSetDevice(net.gpu_index);
net.wait_stream = wait_stream; // 1 - wait CUDA-stream, 0 - not to wait
#endif
//std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
//float nms = .4;
image im;
im.c = img.c;
im.data = img.data;
im.h = img.h;
im.w = img.w;
image sized;
if (net.w == im.w && net.h == im.h) {
sized = make_image(im.w, im.h, im.c);
memcpy(sized.data, im.data, im.w*im.h*im.c * sizeof(float));
}
else
sized = resize_image(im, net.w, net.h);
layer l = net.layers[net.n - 1];
float *X = sized.data;
float *prediction = network_predict(net, X);
if (use_mean) {
memcpy(detector_gpu.predictions[detector_gpu.demo_index], prediction, l.outputs * sizeof(float));
mean_arrays(detector_gpu.predictions, FRAMES, l.outputs, detector_gpu.avg);
l.output = detector_gpu.avg;
detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES;
}
get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
std::vector<bbox_t> bbox_vec;
for (size_t i = 0; i < (l.w*l.h*l.n); ++i) {
box b = detector_gpu.boxes[i];
int const obj_id = max_index(detector_gpu.probs[i], l.classes);
float const prob = detector_gpu.probs[i][obj_id];
if (prob > thresh)
{
bbox_t bbox;
bbox.x = std::max((double)0, (b.x - b.w / 2.)*im.w);
bbox.y = std::max((double)0, (b.y - b.h / 2.)*im.h);
bbox.w = b.w*im.w;
bbox.h = b.h*im.h;
bbox.obj_id = obj_id;
bbox.prob = prob;
bbox.track_id = 0;
bbox_vec.push_back(bbox);
}
}
if(sized.data)
free(sized.data);
#ifdef GPU
if (cur_gpu_id != old_gpu_index)
cudaSetDevice(old_gpu_index);
#endif
return bbox_vec;
}
YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history,
int const frames_story, int const max_dist)
{
detector_gpu_t &det_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
bool prev_track_id_present = false;
for (auto &i : prev_bbox_vec_deque)
if (i.size() > 0) prev_track_id_present = true;
if (!prev_track_id_present) {
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
prev_bbox_vec_deque.push_front(cur_bbox_vec);
if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
return cur_bbox_vec;
}
std::vector<unsigned int> dist_vec(cur_bbox_vec.size(), std::numeric_limits<unsigned int>::max());
for (auto &prev_bbox_vec : prev_bbox_vec_deque) {
for (auto &i : prev_bbox_vec) {
int cur_index = -1;
for (size_t m = 0; m < cur_bbox_vec.size(); ++m) {
bbox_t const& k = cur_bbox_vec[m];
if (i.obj_id == k.obj_id) {
float center_x_diff = (float)(i.x + i.w/2) - (float)(k.x + k.w/2);
float center_y_diff = (float)(i.y + i.h/2) - (float)(k.y + k.h/2);
unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff*center_y_diff);
if (cur_dist < max_dist && (k.track_id == 0 || dist_vec[m] > cur_dist)) {
dist_vec[m] = cur_dist;
cur_index = m;
}
}
}
bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(),
[&i](bbox_t const& b) { return b.track_id == i.track_id && b.obj_id == i.obj_id; });
if (cur_index >= 0 && track_id_absent){
cur_bbox_vec[cur_index].track_id = i.track_id;
cur_bbox_vec[cur_index].w = (cur_bbox_vec[cur_index].w + i.w) / 2;
cur_bbox_vec[cur_index].h = (cur_bbox_vec[cur_index].h + i.h) / 2;
}
}
}
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
if (cur_bbox_vec[i].track_id == 0)
cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
if (change_history) {
prev_bbox_vec_deque.push_front(cur_bbox_vec);
if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
}
return cur_bbox_vec;
}