You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

573 lines
20 KiB

#include "region_layer.h"
#include "activations.h"
#include "blas.h"
#include "box.h"
#include "cuda.h"
#include "utils.h"
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#define DOABS 1
region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords, int max_boxes)
{
region_layer l = {0};
l.type = REGION;
l.n = n;
l.batch = batch;
l.h = h;
l.w = w;
l.classes = classes;
l.coords = coords;
l.cost = calloc(1, sizeof(float));
l.biases = calloc(n*2, sizeof(float));
l.bias_updates = calloc(n*2, sizeof(float));
l.outputs = h*w*n*(classes + coords + 1);
l.inputs = l.outputs;
l.max_boxes = max_boxes;
l.truths = max_boxes*(5);
l.delta = calloc(batch*l.outputs, sizeof(float));
l.output = calloc(batch*l.outputs, sizeof(float));
int i;
for(i = 0; i < n*2; ++i){
l.biases[i] = .5;
}
l.forward = forward_region_layer;
l.backward = backward_region_layer;
#ifdef GPU
l.forward_gpu = forward_region_layer_gpu;
l.backward_gpu = backward_region_layer_gpu;
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
fprintf(stderr, "detection\n");
srand(0);
return l;
}
void resize_region_layer(layer *l, int w, int h)
{
int old_w = l->w;
int old_h = l->h;
l->w = w;
l->h = h;
l->outputs = h*w*l->n*(l->classes + l->coords + 1);
l->inputs = l->outputs;
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
#ifdef GPU
if (old_w < w || old_h < h) {
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
}
#endif
}
box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
{
box b;
b.x = (i + logistic_activate(x[index + 0])) / w;
b.y = (j + logistic_activate(x[index + 1])) / h;
b.w = exp(x[index + 2]) * biases[2*n];
b.h = exp(x[index + 3]) * biases[2*n+1];
if(DOABS){
b.w = exp(x[index + 2]) * biases[2*n] / w;
b.h = exp(x[index + 3]) * biases[2*n+1] / h;
}
return b;
}
float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale)
{
box pred = get_region_box(x, biases, n, index, i, j, w, h);
float iou = box_iou(pred, truth);
float tx = (truth.x*w - i);
float ty = (truth.y*h - j);
float tw = log(truth.w / biases[2*n]);
float th = log(truth.h / biases[2*n + 1]);
if(DOABS){
tw = log(truth.w*w / biases[2*n]);
th = log(truth.h*h / biases[2*n + 1]);
}
delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
delta[index + 2] = scale * (tw - x[index + 2]);
delta[index + 3] = scale * (th - x[index + 3]);
return iou;
}
void delta_region_class(float *output, float *delta, int index, int class_id, int classes, tree *hier, float scale, float *avg_cat, int focal_loss)
{
int i, n;
if(hier){
float pred = 1;
while(class_id >= 0){
pred *= output[index + class_id];
int g = hier->group[class_id];
int offset = hier->group_offset[g];
for(i = 0; i < hier->group_size[g]; ++i){
delta[index + offset + i] = scale * (0 - output[index + offset + i]);
}
delta[index + class_id] = scale * (1 - output[index + class_id]);
class_id = hier->parent[class_id];
}
*avg_cat += pred;
} else {
// Focal loss
if (focal_loss) {
// Focal Loss
float alpha = 0.5; // 0.25 or 0.5
//float gamma = 2; // hardcoded in many places of the grad-formula
int ti = index + class_id;
float pt = output[ti] + 0.000000000000001F;
//float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832
float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss
for (n = 0; n < classes; ++n) {
delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
delta[index + n] *= alpha*grad;
if (n == class_id) *avg_cat += output[index + n];
}
}
else {
// default
for (n = 0; n < classes; ++n) {
delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
if (n == class_id) *avg_cat += output[index + n];
}
}
}
}
float logit(float x)
{
return log(x/(1.-x));
}
float tisnan(float x)
{
return (x != x);
}
static int entry_index(layer l, int batch, int location, int entry)
{
int n = location / (l.w*l.h);
int loc = location % (l.w*l.h);
return batch*l.outputs + n*l.w*l.h*(l.coords + l.classes + 1) + entry*l.w*l.h + loc;
}
void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output);
void forward_region_layer(const region_layer l, network_state state)
{
int i,j,b,t,n;
int size = l.coords + l.classes + 1;
memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
#ifndef GPU
flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
#endif
for (b = 0; b < l.batch; ++b){
for(i = 0; i < l.h*l.w*l.n; ++i){
int index = size*i + b*l.outputs;
l.output[index + 4] = logistic_activate(l.output[index + 4]);
}
}
#ifndef GPU
if (l.softmax_tree){
for (b = 0; b < l.batch; ++b){
for(i = 0; i < l.h*l.w*l.n; ++i){
int index = size*i + b*l.outputs;
softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
}
}
} else if (l.softmax){
for (b = 0; b < l.batch; ++b){
for(i = 0; i < l.h*l.w*l.n; ++i){
int index = size*i + b*l.outputs;
softmax(l.output + index + 5, l.classes, 1, l.output + index + 5, 1);
}
}
}
#endif
if(!state.train) return;
memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
float avg_iou = 0;
float recall = 0;
float avg_cat = 0;
float avg_obj = 0;
float avg_anyobj = 0;
int count = 0;
int class_count = 0;
*(l.cost) = 0;
for (b = 0; b < l.batch; ++b) {
if(l.softmax_tree){
int onlyclass_id = 0;
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box(state.truth + t*5 + b*l.truths);
if(!truth.x) break;
int class_id = state.truth[t*5 + b*l.truths + 4];
float maxp = 0;
int maxi = 0;
if(truth.x > 100000 && truth.y > 100000){
for(n = 0; n < l.n*l.w*l.h; ++n){
int index = size*n + b*l.outputs + 5;
float scale = l.output[index-1];
float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class_id);
if(p > maxp){
maxp = p;
maxi = n;
}
}
int index = size*maxi + b*l.outputs + 5;
delta_region_class(l.output, l.delta, index, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
++class_count;
onlyclass_id = 1;
break;
}
}
if(onlyclass_id) continue;
}
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
float best_iou = 0;
int best_class_id = -1;
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box(state.truth + t*5 + b*l.truths);
if(!truth.x) break;
float iou = box_iou(pred, truth);
if (iou > best_iou) {
best_class_id = state.truth[t*5 + b*l.truths + 4];
best_iou = iou;
}
}
avg_anyobj += l.output[index + 4];
l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
else{
if (best_iou > l.thresh) {
l.delta[index + 4] = 0;
if(l.classfix > 0){
delta_region_class(l.output, l.delta, index + 5, best_class_id, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat, l.focal_loss);
++class_count;
}
}
}
if(*(state.net.seen) < 12800){
box truth = {0};
truth.x = (i + .5)/l.w;
truth.y = (j + .5)/l.h;
truth.w = l.biases[2*n];
truth.h = l.biases[2*n+1];
if(DOABS){
truth.w = l.biases[2*n]/l.w;
truth.h = l.biases[2*n+1]/l.h;
}
delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
}
}
}
}
for(t = 0; t < l.max_boxes; ++t){
box truth = float_to_box(state.truth + t*5 + b*l.truths);
if(!truth.x) break;
float best_iou = 0;
int best_index = 0;
int best_n = 0;
i = (truth.x * l.w);
j = (truth.y * l.h);
//printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
box truth_shift = truth;
truth_shift.x = 0;
truth_shift.y = 0;
//printf("index %d %d\n",i, j);
for(n = 0; n < l.n; ++n){
int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
if(l.bias_match){
pred.w = l.biases[2*n];
pred.h = l.biases[2*n+1];
if(DOABS){
pred.w = l.biases[2*n]/l.w;
pred.h = l.biases[2*n+1]/l.h;
}
}
//printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
pred.x = 0;
pred.y = 0;
float iou = box_iou(pred, truth_shift);
if (iou > best_iou){
best_index = index;
best_iou = iou;
best_n = n;
}
}
//printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale);
if(iou > .5) recall += 1;
avg_iou += iou;
//l.delta[best_index + 4] = iou - l.output[best_index + 4];
avg_obj += l.output[best_index + 4];
l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
if (l.rescore) {
l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
}
int class_id = state.truth[t*5 + b*l.truths + 4];
if (l.map) class_id = l.map[class_id];
delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
++count;
++class_count;
}
}
//printf("\n");
#ifndef GPU
flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0);
#endif
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
}
void backward_region_layer(const region_layer l, network_state state)
{
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map)
{
int i,j,n;
float *predictions = l.output;
for (i = 0; i < l.w*l.h; ++i){
int row = i / l.w;
int col = i % l.w;
for(n = 0; n < l.n; ++n){
int index = i*l.n + n;
int p_index = index * (l.classes + 5) + 4;
float scale = predictions[p_index];
if(l.classfix == -1 && scale < .5) scale = 0;
int box_index = index * (l.classes + 5);
boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);
boxes[index].x *= w;
boxes[index].y *= h;
boxes[index].w *= w;
boxes[index].h *= h;
int class_index = index * (l.classes + 5) + 5;
if(l.softmax_tree){
hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
int found = 0;
if(map){
for(j = 0; j < 200; ++j){
float prob = scale*predictions[class_index+map[j]];
probs[index][j] = (prob > thresh) ? prob : 0;
}
} else {
for(j = l.classes - 1; j >= 0; --j){
if(!found && predictions[class_index + j] > .5){
found = 1;
} else {
predictions[class_index + j] = 0;
}
float prob = predictions[class_index+j];
probs[index][j] = (scale > thresh) ? prob : 0;
}
}
} else {
for(j = 0; j < l.classes; ++j){
float prob = scale*predictions[class_index+j];
probs[index][j] = (prob > thresh) ? prob : 0;
}
}
if(only_objectness){
probs[index][0] = scale;
}
}
}
}
#ifdef GPU
void forward_region_layer_gpu(const region_layer l, network_state state)
{
/*
if(!state.train){
copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
return;
}
*/
flatten_ongpu(state.input, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 1, l.output_gpu);
if(l.softmax_tree){
int i;
int count = 5;
for (i = 0; i < l.softmax_tree->groups; ++i) {
int group_size = l.softmax_tree->group_size[i];
softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
count += group_size;
}
}else if (l.softmax){
softmax_gpu(l.output_gpu+5, l.classes, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + 5);
}
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
int num_truth = l.batch*l.truths;
truth_cpu = calloc(num_truth, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, num_truth);
}
cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
//cudaStreamSynchronize(get_cuda_stream());
network_state cpu_state = state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
forward_region_layer(l, cpu_state);
//cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
free(cpu_state.input);
if(!state.train) return;
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
//cudaStreamSynchronize(get_cuda_stream());
if(cpu_state.truth) free(cpu_state.truth);
}
void backward_region_layer_gpu(region_layer l, network_state state)
{
flatten_ongpu(l.delta_gpu, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 0, state.delta);
}
#endif
void correct_region_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
{
int i;
int new_w = 0;
int new_h = 0;
if (((float)netw / w) < ((float)neth / h)) {
new_w = netw;
new_h = (h * netw) / w;
}
else {
new_h = neth;
new_w = (w * neth) / h;
}
for (i = 0; i < n; ++i) {
box b = dets[i].bbox;
b.x = (b.x - (netw - new_w) / 2. / netw) / ((float)new_w / netw);
b.y = (b.y - (neth - new_h) / 2. / neth) / ((float)new_h / neth);
b.w *= (float)netw / new_w;
b.h *= (float)neth / new_h;
if (!relative) {
b.x *= w;
b.w *= w;
b.y *= h;
b.h *= h;
}
dets[i].bbox = b;
}
}
/*
void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets)
{
int i, j, n, z;
float *predictions = l.output;
if (l.batch == 2) {
float *flip = l.output + l.outputs;
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w / 2; ++i) {
for (n = 0; n < l.n; ++n) {
for (z = 0; z < l.classes + l.coords + 1; ++z) {
int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
float swap = flip[i1];
flip[i1] = flip[i2];
flip[i2] = swap;
if (z == 0) {
flip[i1] = -flip[i1];
flip[i2] = -flip[i2];
}
}
}
}
}
for (i = 0; i < l.outputs; ++i) {
l.output[i] = (l.output[i] + flip[i]) / 2.;
}
}
for (i = 0; i < l.w*l.h; ++i) {
int row = i / l.w;
int col = i % l.w;
for (n = 0; n < l.n; ++n) {
int index = n*l.w*l.h + i;
for (j = 0; j < l.classes; ++j) {
dets[index].prob[j] = 0;
}
int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
float scale = l.background ? 1 : predictions[obj_index];
dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h, l.w*l.h);
dets[index].objectness = scale > thresh ? scale : 0;
if (dets[index].mask) {
for (j = 0; j < l.coords - 4; ++j) {
dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
}
}
int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background);
if (l.softmax_tree) {
hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0, l.w*l.h);
if (map) {
for (j = 0; j < 200; ++j) {
int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
float prob = scale*predictions[class_index];
dets[index].prob[j] = (prob > thresh) ? prob : 0;
}
}
else {
int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
dets[index].prob[j] = (scale > thresh) ? scale : 0;
}
}
else {
if (dets[index].objectness) {
for (j = 0; j < l.classes; ++j) {
int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
float prob = scale*predictions[class_index];
dets[index].prob[j] = (prob > thresh) ? prob : 0;
}
}
}
}
}
correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
}
*/