mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
950 lines
32 KiB
950 lines
32 KiB
#include "convolutional_layer.h" |
|
#include "utils.h" |
|
#include "batchnorm_layer.h" |
|
#include "im2col.h" |
|
#include "col2im.h" |
|
#include "blas.h" |
|
#include "gemm.h" |
|
#include <stdio.h> |
|
#include <time.h> |
|
|
|
#ifdef CUDNN |
|
#pragma comment(lib, "cudnn.lib") |
|
#endif |
|
|
|
#ifdef AI2 |
|
#include "xnor_layer.h" |
|
#endif |
|
|
|
#ifndef AI2 |
|
#define AI2 0 |
|
void forward_xnor_layer(layer l, network_state state); |
|
#endif |
|
|
|
void swap_binary(convolutional_layer *l) |
|
{ |
|
float *swap = l->weights; |
|
l->weights = l->binary_weights; |
|
l->binary_weights = swap; |
|
|
|
#ifdef GPU |
|
swap = l->weights_gpu; |
|
l->weights_gpu = l->binary_weights_gpu; |
|
l->binary_weights_gpu = swap; |
|
#endif |
|
} |
|
|
|
void binarize_weights(float *weights, int n, int size, float *binary) |
|
{ |
|
int i, f; |
|
for(f = 0; f < n; ++f){ |
|
float mean = 0; |
|
for(i = 0; i < size; ++i){ |
|
mean += fabs(weights[f*size + i]); |
|
} |
|
mean = mean / size; |
|
for(i = 0; i < size; ++i){ |
|
binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean; |
|
} |
|
} |
|
} |
|
|
|
void binarize_cpu(float *input, int n, float *binary) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
binary[i] = (input[i] > 0) ? 1 : -1; |
|
} |
|
} |
|
|
|
void binarize_input(float *input, int n, int size, float *binary) |
|
{ |
|
int i, s; |
|
for(s = 0; s < size; ++s){ |
|
float mean = 0; |
|
for(i = 0; i < n; ++i){ |
|
mean += fabs(input[i*size + s]); |
|
} |
|
mean = mean / n; |
|
for(i = 0; i < n; ++i){ |
|
binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; |
|
} |
|
} |
|
} |
|
|
|
int convolutional_out_height(convolutional_layer l) |
|
{ |
|
return (l.h + 2*l.pad - l.size) / l.stride + 1; |
|
} |
|
|
|
int convolutional_out_width(convolutional_layer l) |
|
{ |
|
return (l.w + 2*l.pad - l.size) / l.stride + 1; |
|
} |
|
|
|
image get_convolutional_image(convolutional_layer l) |
|
{ |
|
int h,w,c; |
|
h = convolutional_out_height(l); |
|
w = convolutional_out_width(l); |
|
c = l.n; |
|
return float_to_image(w,h,c,l.output); |
|
} |
|
|
|
image get_convolutional_delta(convolutional_layer l) |
|
{ |
|
int h,w,c; |
|
h = convolutional_out_height(l); |
|
w = convolutional_out_width(l); |
|
c = l.n; |
|
return float_to_image(w,h,c,l.delta); |
|
} |
|
|
|
size_t get_workspace_size(layer l){ |
|
#ifdef CUDNN |
|
if(gpu_index >= 0){ |
|
size_t most = 0; |
|
size_t s = 0; |
|
cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(), |
|
l.srcTensorDesc, |
|
l.weightDesc, |
|
l.convDesc, |
|
l.dstTensorDesc, |
|
l.fw_algo, |
|
&s); |
|
if (s > most) most = s; |
|
cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(), |
|
l.srcTensorDesc, |
|
l.ddstTensorDesc, |
|
l.convDesc, |
|
l.dweightDesc, |
|
l.bf_algo, |
|
&s); |
|
if (s > most) most = s; |
|
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(), |
|
l.weightDesc, |
|
l.ddstTensorDesc, |
|
l.convDesc, |
|
l.dsrcTensorDesc, |
|
l.bd_algo, |
|
&s); |
|
if (s > most) most = s; |
|
return most; |
|
} |
|
#endif |
|
return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float); |
|
} |
|
|
|
#ifdef GPU |
|
#ifdef CUDNN |
|
void cudnn_convolutional_setup(layer *l, int cudnn_preference) |
|
{ |
|
|
|
#ifdef CUDNN_HALF |
|
// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): |
|
// Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100 |
|
// PSEUDO_HALF_CONFIG is required for Tensor Cores - our case! |
|
const cudnnDataType_t data_type = CUDNN_DATA_HALF; |
|
#else |
|
cudnnDataType_t data_type = CUDNN_DATA_FLOAT; |
|
#endif |
|
|
|
#if(CUDNN_MAJOR >= 7) |
|
// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH |
|
// For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT |
|
// otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF |
|
// Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/ |
|
// 1. Accumulation into FP32 |
|
// 2. Loss Scaling - required only for: activation gradients. We do not use. |
|
// 3. FP32 Master Copy of Weights |
|
// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops |
|
cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH); |
|
#endif |
|
|
|
// INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported |
|
// on architectures with DP4A support (compute capability 6.1 and later). |
|
//cudnnDataType_t data_type = CUDNN_DATA_INT8; |
|
|
|
// backward delta |
|
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w); |
|
cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w); |
|
cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); |
|
|
|
// forward |
|
cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w); |
|
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w); |
|
cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); |
|
|
|
// batch norm |
|
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); |
|
cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); |
|
|
|
cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w); |
|
#if(CUDNN_MAJOR >= 6) |
|
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0 |
|
#else |
|
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1 |
|
#endif |
|
int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST; |
|
int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST; |
|
int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST; |
|
if (cudnn_preference == cudnn_smallest) |
|
{ |
|
forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE; |
|
backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE; |
|
backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE; |
|
printf(" CUDNN-slow "); |
|
} |
|
|
|
cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), |
|
l->srcTensorDesc, |
|
l->weightDesc, |
|
l->convDesc, |
|
l->dstTensorDesc, |
|
forward_algo, |
|
0, |
|
&l->fw_algo); |
|
cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(), |
|
l->weightDesc, |
|
l->ddstTensorDesc, |
|
l->convDesc, |
|
l->dsrcTensorDesc, |
|
backward_algo, |
|
0, |
|
&l->bd_algo); |
|
cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(), |
|
l->srcTensorDesc, |
|
l->ddstTensorDesc, |
|
l->convDesc, |
|
l->dweightDesc, |
|
backward_filter, |
|
0, |
|
&l->bf_algo); |
|
|
|
if (data_type == CUDNN_DATA_HALF) |
|
{ |
|
// HALF-16 if(data_type == CUDNN_DATA_HALF) |
|
l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; |
|
l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; |
|
l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; |
|
|
|
// FLOAT-32 if(data_type == CUDNN_DATA_FLOAT) |
|
//l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED; |
|
//l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED; |
|
//l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED; |
|
|
|
int fw = 0, bd = 0, bf = 0; |
|
if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) fw = 1; |
|
//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM \n"); |
|
if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED) fw = 2; |
|
//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED \n"); |
|
|
|
if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) bd = 1; |
|
//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 \n"); |
|
if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED) bd = 2; |
|
//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED \n"); |
|
|
|
if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) bf = 1; |
|
//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 \n"); |
|
if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2; |
|
//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n"); |
|
|
|
//if (fw == 2 && bd == 2 && bf == 2) printf("TF "); |
|
//else if (fw == 1 && bd == 1 && bf == 1) printf("TH "); |
|
} |
|
} |
|
#endif |
|
#endif |
|
|
|
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam) |
|
{ |
|
int i; |
|
convolutional_layer l = {0}; |
|
l.type = CONVOLUTIONAL; |
|
|
|
l.h = h; |
|
l.w = w; |
|
l.c = c; |
|
l.n = n; |
|
l.binary = binary; |
|
l.xnor = xnor; |
|
l.batch = batch; |
|
l.stride = stride; |
|
l.size = size; |
|
l.pad = padding; |
|
l.batch_normalize = batch_normalize; |
|
|
|
l.weights = calloc(c*n*size*size, sizeof(float)); |
|
l.weight_updates = calloc(c*n*size*size, sizeof(float)); |
|
|
|
l.biases = calloc(n, sizeof(float)); |
|
l.bias_updates = calloc(n, sizeof(float)); |
|
|
|
// float scale = 1./sqrt(size*size*c); |
|
float scale = sqrt(2./(size*size*c)); |
|
for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1); |
|
int out_h = convolutional_out_height(l); |
|
int out_w = convolutional_out_width(l); |
|
l.out_h = out_h; |
|
l.out_w = out_w; |
|
l.out_c = n; |
|
l.outputs = l.out_h * l.out_w * l.out_c; |
|
l.inputs = l.w * l.h * l.c; |
|
|
|
l.output = calloc(l.batch*l.outputs, sizeof(float)); |
|
l.delta = calloc(l.batch*l.outputs, sizeof(float)); |
|
|
|
l.forward = forward_convolutional_layer; |
|
l.backward = backward_convolutional_layer; |
|
l.update = update_convolutional_layer; |
|
if(binary){ |
|
l.binary_weights = calloc(c*n*size*size, sizeof(float)); |
|
l.cweights = calloc(c*n*size*size, sizeof(char)); |
|
l.scales = calloc(n, sizeof(float)); |
|
} |
|
if(xnor){ |
|
l.binary_weights = calloc(c*n*size*size, sizeof(float)); |
|
l.binary_input = calloc(l.inputs*l.batch, sizeof(float)); |
|
} |
|
|
|
if(batch_normalize){ |
|
l.scales = calloc(n, sizeof(float)); |
|
l.scale_updates = calloc(n, sizeof(float)); |
|
for(i = 0; i < n; ++i){ |
|
l.scales[i] = 1; |
|
} |
|
|
|
l.mean = calloc(n, sizeof(float)); |
|
l.variance = calloc(n, sizeof(float)); |
|
|
|
l.mean_delta = calloc(n, sizeof(float)); |
|
l.variance_delta = calloc(n, sizeof(float)); |
|
|
|
l.rolling_mean = calloc(n, sizeof(float)); |
|
l.rolling_variance = calloc(n, sizeof(float)); |
|
l.x = calloc(l.batch*l.outputs, sizeof(float)); |
|
l.x_norm = calloc(l.batch*l.outputs, sizeof(float)); |
|
} |
|
if(adam){ |
|
l.adam = 1; |
|
l.m = calloc(c*n*size*size, sizeof(float)); |
|
l.v = calloc(c*n*size*size, sizeof(float)); |
|
} |
|
|
|
#ifdef GPU |
|
l.forward_gpu = forward_convolutional_layer_gpu; |
|
l.backward_gpu = backward_convolutional_layer_gpu; |
|
l.update_gpu = update_convolutional_layer_gpu; |
|
|
|
if(gpu_index >= 0){ |
|
if (adam) { |
|
l.m_gpu = cuda_make_array(l.m, c*n*size*size); |
|
l.v_gpu = cuda_make_array(l.v, c*n*size*size); |
|
} |
|
|
|
l.weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
|
#ifdef CUDNN_HALF |
|
l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2); |
|
l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2); |
|
#endif |
|
l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size); |
|
|
|
l.biases_gpu = cuda_make_array(l.biases, n); |
|
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); |
|
|
|
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); |
|
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
|
|
|
if(binary){ |
|
l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
|
} |
|
if(xnor){ |
|
l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
|
l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch); |
|
} |
|
|
|
if(batch_normalize){ |
|
l.mean_gpu = cuda_make_array(l.mean, n); |
|
l.variance_gpu = cuda_make_array(l.variance, n); |
|
|
|
l.rolling_mean_gpu = cuda_make_array(l.mean, n); |
|
l.rolling_variance_gpu = cuda_make_array(l.variance, n); |
|
|
|
l.mean_delta_gpu = cuda_make_array(l.mean, n); |
|
l.variance_delta_gpu = cuda_make_array(l.variance, n); |
|
|
|
l.scales_gpu = cuda_make_array(l.scales, n); |
|
l.scale_updates_gpu = cuda_make_array(l.scale_updates, n); |
|
|
|
l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
|
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
|
} |
|
#ifdef CUDNN |
|
cudnnCreateTensorDescriptor(&l.normDstTensorDesc); |
|
cudnnCreateTensorDescriptor(&l.normDstTensorDescF16); |
|
cudnnCreateTensorDescriptor(&l.normTensorDesc); |
|
cudnnCreateTensorDescriptor(&l.srcTensorDesc); |
|
cudnnCreateTensorDescriptor(&l.dstTensorDesc); |
|
cudnnCreateFilterDescriptor(&l.weightDesc); |
|
cudnnCreateTensorDescriptor(&l.dsrcTensorDesc); |
|
cudnnCreateTensorDescriptor(&l.ddstTensorDesc); |
|
cudnnCreateFilterDescriptor(&l.dweightDesc); |
|
cudnnCreateConvolutionDescriptor(&l.convDesc); |
|
cudnn_convolutional_setup(&l, cudnn_fastest); |
|
#endif |
|
} |
|
#endif |
|
l.workspace_size = get_workspace_size(l); |
|
l.activation = activation; |
|
|
|
//fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c); |
|
l.bflops = (2.0 * l.n * l.size*l.size*l.c * l.out_h*l.out_w) / 1000000000.; |
|
fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops); |
|
|
|
return l; |
|
} |
|
|
|
void denormalize_convolutional_layer(convolutional_layer l) |
|
{ |
|
int i, j; |
|
for(i = 0; i < l.n; ++i){ |
|
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); |
|
for(j = 0; j < l.c*l.size*l.size; ++j){ |
|
l.weights[i*l.c*l.size*l.size + j] *= scale; |
|
} |
|
l.biases[i] -= l.rolling_mean[i] * scale; |
|
l.scales[i] = 1; |
|
l.rolling_mean[i] = 0; |
|
l.rolling_variance[i] = 1; |
|
} |
|
} |
|
|
|
void test_convolutional_layer() |
|
{ |
|
convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0); |
|
l.batch_normalize = 1; |
|
float data[] = {1,1,1,1,1, |
|
1,1,1,1,1, |
|
1,1,1,1,1, |
|
1,1,1,1,1, |
|
1,1,1,1,1, |
|
2,2,2,2,2, |
|
2,2,2,2,2, |
|
2,2,2,2,2, |
|
2,2,2,2,2, |
|
2,2,2,2,2, |
|
3,3,3,3,3, |
|
3,3,3,3,3, |
|
3,3,3,3,3, |
|
3,3,3,3,3, |
|
3,3,3,3,3}; |
|
network_state state = {0}; |
|
state.input = data; |
|
forward_convolutional_layer(l, state); |
|
} |
|
|
|
void resize_convolutional_layer(convolutional_layer *l, int w, int h) |
|
{ |
|
int old_w = l->w; |
|
int old_h = l->h; |
|
l->w = w; |
|
l->h = h; |
|
int out_w = convolutional_out_width(*l); |
|
int out_h = convolutional_out_height(*l); |
|
|
|
l->out_w = out_w; |
|
l->out_h = out_h; |
|
|
|
l->outputs = l->out_h * l->out_w * l->out_c; |
|
l->inputs = l->w * l->h * l->c; |
|
|
|
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); |
|
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float)); |
|
if(l->batch_normalize){ |
|
l->x = realloc(l->x, l->batch*l->outputs*sizeof(float)); |
|
l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float)); |
|
} |
|
|
|
if (l->xnor) { |
|
//l->binary_input = realloc(l->inputs*l->batch, sizeof(float)); |
|
} |
|
|
|
#ifdef GPU |
|
if (old_w < w || old_h < h) { |
|
cuda_free(l->delta_gpu); |
|
cuda_free(l->output_gpu); |
|
|
|
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); |
|
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
|
|
|
if (l->batch_normalize) { |
|
cuda_free(l->x_gpu); |
|
cuda_free(l->x_norm_gpu); |
|
|
|
l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
|
l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
|
} |
|
|
|
if (l->xnor) { |
|
cuda_free(l->binary_input_gpu); |
|
l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch); |
|
} |
|
} |
|
#ifdef CUDNN |
|
cudnn_convolutional_setup(l, cudnn_fastest); |
|
#endif |
|
#endif |
|
l->workspace_size = get_workspace_size(*l); |
|
|
|
#ifdef CUDNN |
|
// check for excessive memory consumption |
|
size_t free_byte; |
|
size_t total_byte; |
|
check_error(cudaMemGetInfo(&free_byte, &total_byte)); |
|
if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) { |
|
printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2); |
|
cudnn_convolutional_setup(l, cudnn_smallest); |
|
l->workspace_size = get_workspace_size(*l); |
|
} |
|
#endif |
|
} |
|
|
|
void add_bias(float *output, float *biases, int batch, int n, int size) |
|
{ |
|
int i,j,b; |
|
for(b = 0; b < batch; ++b){ |
|
for(i = 0; i < n; ++i){ |
|
for(j = 0; j < size; ++j){ |
|
output[(b*n + i)*size + j] += biases[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void scale_bias(float *output, float *scales, int batch, int n, int size) |
|
{ |
|
int i,j,b; |
|
for(b = 0; b < batch; ++b){ |
|
for(i = 0; i < n; ++i){ |
|
for(j = 0; j < size; ++j){ |
|
output[(b*n + i)*size + j] *= scales[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size) |
|
{ |
|
int i,b; |
|
for(b = 0; b < batch; ++b){ |
|
for(i = 0; i < n; ++i){ |
|
bias_updates[i] += sum_array(delta+size*(i+b*n), size); |
|
} |
|
} |
|
} |
|
|
|
void gemm_nn_custom(int M, int N, int K, float ALPHA, |
|
float *A, int lda, |
|
float *B, int ldb, |
|
float *C, int ldc) |
|
{ |
|
int i, j, k; |
|
for (i = 0; i < M; ++i) { |
|
for (k = 0; k < K; ++k) { |
|
register float A_PART = ALPHA*A[i*lda + k]; |
|
//printf("\n weight = %f \n", A_PART); |
|
for (j = 0; j < N; ++j) { |
|
C[i*ldc + j] += A_PART*B[k*ldb + j]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) { |
|
size_t i, counter; |
|
counter = 0; |
|
for (i = 0; i < size; i += size / filters) { |
|
mean_arr[counter++] = fabs(src[i]); |
|
} |
|
} |
|
|
|
/* |
|
void float_to_bit(float *src, unsigned char *dst, size_t size) { |
|
|
|
size_t dst_size = size / 8 + 1; |
|
memset(dst, 0, dst_size); |
|
size_t i, dst_i, dst_shift; |
|
for (i = 0; i < size; ++i) { |
|
if (src[i] > 0) set_bit(dst, i); |
|
} |
|
} |
|
*/ |
|
|
|
void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) { |
|
memset(dst, 0, size *sizeof(float)); |
|
size_t i, src_i, src_shift; |
|
|
|
for (i = 0; i < size; ++i) { |
|
float mean_val = 1; |
|
if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]); |
|
if(get_bit(src, i)) dst[i] = mean_val; |
|
else dst[i] = -mean_val; |
|
} |
|
} |
|
|
|
void binary_align_weights(convolutional_layer *l, size_t lda_align) |
|
{ |
|
int m = l->n; |
|
int k = l->size*l->size*l->c; |
|
size_t new_lda = k + (lda_align - k%lda_align); // (k / 8 + 1) * 8; |
|
|
|
binarize_weights(l->weights, m, k, l->binary_weights); |
|
|
|
size_t align_weights_size = new_lda * m; |
|
size_t align_bit_weights_size = align_weights_size / 8;// +1; |
|
float *align_weights = calloc(align_weights_size, sizeof(float)); |
|
l->align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
|
|
|
size_t i, j; |
|
// align A without transpose |
|
for (i = 0; i < m; ++i) { |
|
for (j = 0; j < k; ++j) { |
|
align_weights[i*new_lda + j] = l->binary_weights[i*k + j]; |
|
} |
|
} |
|
float_to_bit(align_weights, l->align_bit_weights, align_weights_size); |
|
|
|
l->mean_arr = calloc(l->n, sizeof(float)); |
|
get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr); |
|
|
|
free(align_weights); |
|
} |
|
|
|
|
|
size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align) |
|
{ |
|
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
|
size_t t_intput_size = new_ldb * n; |
|
size_t t_bit_input_size = t_intput_size / 8;// +1; |
|
float *t_input = calloc(t_intput_size, sizeof(float)); |
|
//char * |
|
*t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
|
|
|
//printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n); |
|
//printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb); |
|
|
|
//printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
|
//printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
|
|
|
// transpose and align B |
|
int i, j; |
|
//#pragma omp parallel for |
|
/* |
|
for (i = 0; i < n; ++i) { |
|
for (j = 0; j < k; ++j) { |
|
t_input[i*new_ldb + j] = b[j*n + i]; |
|
} |
|
}*/ |
|
//transpose_block_SSE4x4(float *A, float *B, const int n, const int m, const int lda, const int ldb, const int block_size) |
|
|
|
//transpose_block(b, t_input, k, n, n, new_ldb, 16); |
|
|
|
int blocksize = 1; |
|
int mod_k = 1, mod_n = 1; |
|
for (i = 2; i < 256; i *= 2) |
|
if (k % i == 0) mod_k = i; |
|
|
|
for (i = 2; i < 256; i *= 2) |
|
if (n % i == 0) mod_n = i; |
|
|
|
blocksize = (mod_k < mod_n) ? mod_k : mod_n; |
|
|
|
transpose_block_SSE4x4(b, t_input, k, n, n, new_ldb, blocksize); |
|
|
|
//transpose_block(b, t_input, k, n, n, new_ldb, blocksize); |
|
//printf("\n blocksize = %d \n", blocksize); |
|
|
|
float_to_bit(t_input, *t_bit_input, t_intput_size); |
|
free(t_input); |
|
|
|
return t_intput_size; |
|
} |
|
|
|
|
|
void forward_convolutional_layer(convolutional_layer l, network_state state) |
|
{ |
|
int out_h = convolutional_out_height(l); |
|
int out_w = convolutional_out_width(l); |
|
int i; |
|
|
|
fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
|
|
|
if(l.xnor){ |
|
if (!l.align_bit_weights) { |
|
binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
|
//printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights); |
|
} |
|
swap_binary(&l); |
|
binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input); |
|
state.input = l.binary_input; |
|
} |
|
|
|
int m = l.n; |
|
int k = l.size*l.size*l.c; |
|
int n = out_h*out_w; |
|
|
|
float *a = l.weights; |
|
float *b = state.workspace; |
|
float *c = l.output; |
|
|
|
static int u = 0; |
|
u++; |
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
//im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
|
im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
|
|
|
//gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
|
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
|
if (l.xnor) { |
|
size_t output_size = l.outputs; |
|
//float *count_output = calloc(output_size, sizeof(float)); |
|
//size_t bit_output_size = output_size / 8 + 1; |
|
//char *bit_output = calloc(bit_output_size, sizeof(char)); |
|
|
|
size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col() |
|
size_t bit_input_size = intput_size / 8 + 1; |
|
//char *bit_input = calloc(bit_input_size, sizeof(char)); |
|
|
|
size_t weights_size = k * m; //l.size*l.size*l.c*l.n; |
|
size_t bit_weights_size = weights_size / 8 + 1; |
|
//char *bit_weights = calloc(bit_weights_size, sizeof(char)); |
|
//float *mean_arr = calloc(l.n, sizeof(float)); |
|
|
|
// test: float->bit->float |
|
//get_mean_array(l.weights, weights_size, l.n, mean_arr); |
|
//float_to_bit(l.weights, bit_weights, weights_size); |
|
//memset(l.weights, 0, weights_size * sizeof(float)); |
|
//bit_to_float(bit_weights, l.weights, weights_size, l.n, mean_arr); // just for test float->bit->float |
|
|
|
//float_to_bit(b, bit_input, intput_size); |
|
//memset(b, 0, intput_size * sizeof(float)); |
|
//bit_to_float(bit_input, b, intput_size, 1, NULL); // just for test float->bit->float |
|
|
|
// transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) |
|
{ |
|
/* |
|
size_t ldb_align = 256;// 8; |
|
|
|
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
|
size_t t_intput_size = new_ldb * n; |
|
size_t t_bit_input_size = t_intput_size / 8;// +1; |
|
float *t_input = calloc(t_intput_size, sizeof(float)); |
|
char *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
|
|
|
//printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n); |
|
//printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb); |
|
|
|
|
|
//printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
|
//printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
|
|
|
|
|
// transpose and align B |
|
int i, j; |
|
for (i = 0; i < n; ++i) { |
|
for (j = 0; j < k; ++j) { |
|
t_input[i*new_ldb + j] = b[j*n + i]; |
|
} |
|
} |
|
float_to_bit(t_input, t_bit_input, t_intput_size); |
|
|
|
|
|
|
|
if (!l.align_bit_weights) |
|
{ |
|
size_t align_weights_size = new_ldb * m; |
|
size_t align_bit_weights_size = align_weights_size / 8;// +1; |
|
float *align_weights = calloc(align_weights_size, sizeof(float)); |
|
l.align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
|
|
|
// align A without transpose |
|
for (i = 0; i < m; ++i) { |
|
for (j = 0; j < k; ++j) { |
|
align_weights[i*new_ldb + j] = a[i*k + j]; |
|
} |
|
} |
|
float_to_bit(align_weights, l.align_bit_weights, align_weights_size); |
|
|
|
l.mean_arr = calloc(l.n, sizeof(float)); |
|
get_mean_array(align_weights, align_weights_size, l.n, l.mean_arr); |
|
|
|
free(align_weights); |
|
} |
|
*/ |
|
size_t ldb_align = 256; // 256 bit for AVX2 |
|
size_t new_ldb = k + (ldb_align - k%ldb_align); |
|
char *t_bit_input = NULL; |
|
size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align); |
|
|
|
gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
|
|
|
//gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); |
|
|
|
//free(t_input); |
|
free(t_bit_input); |
|
|
|
//free(align_bit_weights); |
|
} |
|
|
|
// for bit_input: (k * n) |
|
//if (u == 8) gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); // last xnor layer |
|
//else gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, NULL); |
|
|
|
//gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); |
|
|
|
//printf("\n u = %d \n", u); |
|
|
|
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
|
|
|
//int j; |
|
//if (u != 8) for (j = 0; j < l.n; ++j) l.biases[j] = l.biases[j] / (mean_arr[j]*2); |
|
|
|
//free(count_output); |
|
//free(bit_input); |
|
//free(bit_weights); |
|
//free(mean_arr); |
|
} |
|
else { |
|
gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n); |
|
// bit-count to float |
|
} |
|
c += n*m; |
|
state.input += l.c*l.h*l.w; |
|
} |
|
|
|
if(l.batch_normalize){ |
|
forward_batchnorm_layer(l, state); |
|
} |
|
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); |
|
|
|
//activate_array(l.output, m*n*l.batch, l.activation); |
|
activate_array_cpu_custom(l.output, m*n*l.batch, l.activation); |
|
|
|
if(l.binary || l.xnor) swap_binary(&l); |
|
} |
|
|
|
void backward_convolutional_layer(convolutional_layer l, network_state state) |
|
{ |
|
int i; |
|
int m = l.n; |
|
int n = l.size*l.size*l.c; |
|
int k = convolutional_out_height(l)* |
|
convolutional_out_width(l); |
|
|
|
gradient_array(l.output, m*k*l.batch, l.activation, l.delta); |
|
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k); |
|
|
|
if(l.batch_normalize){ |
|
backward_batchnorm_layer(l, state); |
|
} |
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
float *a = l.delta + i*m*k; |
|
float *b = state.workspace; |
|
float *c = l.weight_updates; |
|
|
|
float *im = state.input+i*l.c*l.h*l.w; |
|
|
|
im2col_cpu(im, l.c, l.h, l.w, |
|
l.size, l.stride, l.pad, b); |
|
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
|
|
|
if(state.delta){ |
|
a = l.weights; |
|
b = l.delta + i*m*k; |
|
c = state.workspace; |
|
|
|
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); |
|
|
|
col2im_cpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w); |
|
} |
|
} |
|
} |
|
|
|
void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay) |
|
{ |
|
int size = l.size*l.size*l.c*l.n; |
|
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1); |
|
scal_cpu(l.n, momentum, l.bias_updates, 1); |
|
|
|
if(l.scales){ |
|
axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1); |
|
scal_cpu(l.n, momentum, l.scale_updates, 1); |
|
} |
|
|
|
axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1); |
|
axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1); |
|
scal_cpu(size, momentum, l.weight_updates, 1); |
|
} |
|
|
|
|
|
image get_convolutional_weight(convolutional_layer l, int i) |
|
{ |
|
int h = l.size; |
|
int w = l.size; |
|
int c = l.c; |
|
return float_to_image(w,h,c,l.weights+i*h*w*c); |
|
} |
|
|
|
void rgbgr_weights(convolutional_layer l) |
|
{ |
|
int i; |
|
for(i = 0; i < l.n; ++i){ |
|
image im = get_convolutional_weight(l, i); |
|
if (im.c == 3) { |
|
rgbgr_image(im); |
|
} |
|
} |
|
} |
|
|
|
void rescale_weights(convolutional_layer l, float scale, float trans) |
|
{ |
|
int i; |
|
for(i = 0; i < l.n; ++i){ |
|
image im = get_convolutional_weight(l, i); |
|
if (im.c == 3) { |
|
scale_image(im, scale); |
|
float sum = sum_array(im.data, im.w*im.h*im.c); |
|
l.biases[i] += sum*trans; |
|
} |
|
} |
|
} |
|
|
|
image *get_weights(convolutional_layer l) |
|
{ |
|
image *weights = calloc(l.n, sizeof(image)); |
|
int i; |
|
for(i = 0; i < l.n; ++i){ |
|
weights[i] = copy_image(get_convolutional_weight(l, i)); |
|
//normalize_image(weights[i]); |
|
} |
|
return weights; |
|
} |
|
|
|
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights) |
|
{ |
|
image *single_weights = get_weights(l); |
|
show_images(single_weights, l.n, window); |
|
|
|
image delta = get_convolutional_image(l); |
|
image dc = collapse_image_layers(delta, 1); |
|
char buff[256]; |
|
sprintf(buff, "%s: Output", window); |
|
//show_image(dc, buff); |
|
//save_image(dc, buff); |
|
free_image(dc); |
|
return single_weights; |
|
} |
|
|
|
|