You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

950 lines
32 KiB

#include "convolutional_layer.h"
#include "utils.h"
#include "batchnorm_layer.h"
#include "im2col.h"
#include "col2im.h"
#include "blas.h"
#include "gemm.h"
#include <stdio.h>
#include <time.h>
#ifdef CUDNN
#pragma comment(lib, "cudnn.lib")
#endif
#ifdef AI2
#include "xnor_layer.h"
#endif
#ifndef AI2
#define AI2 0
void forward_xnor_layer(layer l, network_state state);
#endif
void swap_binary(convolutional_layer *l)
{
float *swap = l->weights;
l->weights = l->binary_weights;
l->binary_weights = swap;
#ifdef GPU
swap = l->weights_gpu;
l->weights_gpu = l->binary_weights_gpu;
l->binary_weights_gpu = swap;
#endif
}
void binarize_weights(float *weights, int n, int size, float *binary)
{
int i, f;
for(f = 0; f < n; ++f){
float mean = 0;
for(i = 0; i < size; ++i){
mean += fabs(weights[f*size + i]);
}
mean = mean / size;
for(i = 0; i < size; ++i){
binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
}
}
}
void binarize_cpu(float *input, int n, float *binary)
{
int i;
for(i = 0; i < n; ++i){
binary[i] = (input[i] > 0) ? 1 : -1;
}
}
void binarize_input(float *input, int n, int size, float *binary)
{
int i, s;
for(s = 0; s < size; ++s){
float mean = 0;
for(i = 0; i < n; ++i){
mean += fabs(input[i*size + s]);
}
mean = mean / n;
for(i = 0; i < n; ++i){
binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
}
}
}
int convolutional_out_height(convolutional_layer l)
{
return (l.h + 2*l.pad - l.size) / l.stride + 1;
}
int convolutional_out_width(convolutional_layer l)
{
return (l.w + 2*l.pad - l.size) / l.stride + 1;
}
image get_convolutional_image(convolutional_layer l)
{
int h,w,c;
h = convolutional_out_height(l);
w = convolutional_out_width(l);
c = l.n;
return float_to_image(w,h,c,l.output);
}
image get_convolutional_delta(convolutional_layer l)
{
int h,w,c;
h = convolutional_out_height(l);
w = convolutional_out_width(l);
c = l.n;
return float_to_image(w,h,c,l.delta);
}
size_t get_workspace_size(layer l){
#ifdef CUDNN
if(gpu_index >= 0){
size_t most = 0;
size_t s = 0;
cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
l.srcTensorDesc,
l.weightDesc,
l.convDesc,
l.dstTensorDesc,
l.fw_algo,
&s);
if (s > most) most = s;
cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
l.srcTensorDesc,
l.ddstTensorDesc,
l.convDesc,
l.dweightDesc,
l.bf_algo,
&s);
if (s > most) most = s;
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
l.weightDesc,
l.ddstTensorDesc,
l.convDesc,
l.dsrcTensorDesc,
l.bd_algo,
&s);
if (s > most) most = s;
return most;
}
#endif
return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
}
#ifdef GPU
#ifdef CUDNN
void cudnn_convolutional_setup(layer *l, int cudnn_preference)
{
#ifdef CUDNN_HALF
// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
// Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
// PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
const cudnnDataType_t data_type = CUDNN_DATA_HALF;
#else
cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
#endif
#if(CUDNN_MAJOR >= 7)
// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
// For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
// otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
// Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
// 1. Accumulation into FP32
// 2. Loss Scaling - required only for: activation gradients. We do not use.
// 3. FP32 Master Copy of Weights
// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
#endif
// INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
// on architectures with DP4A support (compute capability 6.1 and later).
//cudnnDataType_t data_type = CUDNN_DATA_INT8;
// backward delta
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
// forward
cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
// batch norm
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
#if(CUDNN_MAJOR >= 6)
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0
#else
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1
#endif
int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST;
int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST;
int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST;
if (cudnn_preference == cudnn_smallest)
{
forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
printf(" CUDNN-slow ");
}
cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
l->srcTensorDesc,
l->weightDesc,
l->convDesc,
l->dstTensorDesc,
forward_algo,
0,
&l->fw_algo);
cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
l->weightDesc,
l->ddstTensorDesc,
l->convDesc,
l->dsrcTensorDesc,
backward_algo,
0,
&l->bd_algo);
cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
l->srcTensorDesc,
l->ddstTensorDesc,
l->convDesc,
l->dweightDesc,
backward_filter,
0,
&l->bf_algo);
if (data_type == CUDNN_DATA_HALF)
{
// HALF-16 if(data_type == CUDNN_DATA_HALF)
l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
// FLOAT-32 if(data_type == CUDNN_DATA_FLOAT)
//l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED;
//l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED;
//l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED;
int fw = 0, bd = 0, bf = 0;
if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) fw = 1;
//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM \n");
if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED) fw = 2;
//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED \n");
if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) bd = 1;
//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 \n");
if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED) bd = 2;
//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED \n");
if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) bf = 1;
//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 \n");
if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2;
//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n");
//if (fw == 2 && bd == 2 && bf == 2) printf("TF ");
//else if (fw == 1 && bd == 1 && bf == 1) printf("TH ");
}
}
#endif
#endif
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
{
int i;
convolutional_layer l = {0};
l.type = CONVOLUTIONAL;
l.h = h;
l.w = w;
l.c = c;
l.n = n;
l.binary = binary;
l.xnor = xnor;
l.batch = batch;
l.stride = stride;
l.size = size;
l.pad = padding;
l.batch_normalize = batch_normalize;
l.weights = calloc(c*n*size*size, sizeof(float));
l.weight_updates = calloc(c*n*size*size, sizeof(float));
l.biases = calloc(n, sizeof(float));
l.bias_updates = calloc(n, sizeof(float));
// float scale = 1./sqrt(size*size*c);
float scale = sqrt(2./(size*size*c));
for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
l.out_h = out_h;
l.out_w = out_w;
l.out_c = n;
l.outputs = l.out_h * l.out_w * l.out_c;
l.inputs = l.w * l.h * l.c;
l.output = calloc(l.batch*l.outputs, sizeof(float));
l.delta = calloc(l.batch*l.outputs, sizeof(float));
l.forward = forward_convolutional_layer;
l.backward = backward_convolutional_layer;
l.update = update_convolutional_layer;
if(binary){
l.binary_weights = calloc(c*n*size*size, sizeof(float));
l.cweights = calloc(c*n*size*size, sizeof(char));
l.scales = calloc(n, sizeof(float));
}
if(xnor){
l.binary_weights = calloc(c*n*size*size, sizeof(float));
l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
}
if(batch_normalize){
l.scales = calloc(n, sizeof(float));
l.scale_updates = calloc(n, sizeof(float));
for(i = 0; i < n; ++i){
l.scales[i] = 1;
}
l.mean = calloc(n, sizeof(float));
l.variance = calloc(n, sizeof(float));
l.mean_delta = calloc(n, sizeof(float));
l.variance_delta = calloc(n, sizeof(float));
l.rolling_mean = calloc(n, sizeof(float));
l.rolling_variance = calloc(n, sizeof(float));
l.x = calloc(l.batch*l.outputs, sizeof(float));
l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
}
if(adam){
l.adam = 1;
l.m = calloc(c*n*size*size, sizeof(float));
l.v = calloc(c*n*size*size, sizeof(float));
}
#ifdef GPU
l.forward_gpu = forward_convolutional_layer_gpu;
l.backward_gpu = backward_convolutional_layer_gpu;
l.update_gpu = update_convolutional_layer_gpu;
if(gpu_index >= 0){
if (adam) {
l.m_gpu = cuda_make_array(l.m, c*n*size*size);
l.v_gpu = cuda_make_array(l.v, c*n*size*size);
}
l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
#ifdef CUDNN_HALF
l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2);
l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2);
#endif
l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
l.biases_gpu = cuda_make_array(l.biases, n);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
if(binary){
l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
}
if(xnor){
l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
}
if(batch_normalize){
l.mean_gpu = cuda_make_array(l.mean, n);
l.variance_gpu = cuda_make_array(l.variance, n);
l.rolling_mean_gpu = cuda_make_array(l.mean, n);
l.rolling_variance_gpu = cuda_make_array(l.variance, n);
l.mean_delta_gpu = cuda_make_array(l.mean, n);
l.variance_delta_gpu = cuda_make_array(l.variance, n);
l.scales_gpu = cuda_make_array(l.scales, n);
l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
}
#ifdef CUDNN
cudnnCreateTensorDescriptor(&l.normDstTensorDesc);
cudnnCreateTensorDescriptor(&l.normDstTensorDescF16);
cudnnCreateTensorDescriptor(&l.normTensorDesc);
cudnnCreateTensorDescriptor(&l.srcTensorDesc);
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
cudnnCreateFilterDescriptor(&l.weightDesc);
cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
cudnnCreateFilterDescriptor(&l.dweightDesc);
cudnnCreateConvolutionDescriptor(&l.convDesc);
cudnn_convolutional_setup(&l, cudnn_fastest);
#endif
}
#endif
l.workspace_size = get_workspace_size(l);
l.activation = activation;
//fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
l.bflops = (2.0 * l.n * l.size*l.size*l.c * l.out_h*l.out_w) / 1000000000.;
fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops);
return l;
}
void denormalize_convolutional_layer(convolutional_layer l)
{
int i, j;
for(i = 0; i < l.n; ++i){
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
for(j = 0; j < l.c*l.size*l.size; ++j){
l.weights[i*l.c*l.size*l.size + j] *= scale;
}
l.biases[i] -= l.rolling_mean[i] * scale;
l.scales[i] = 1;
l.rolling_mean[i] = 0;
l.rolling_variance[i] = 1;
}
}
void test_convolutional_layer()
{
convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0);
l.batch_normalize = 1;
float data[] = {1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
2,2,2,2,2,
2,2,2,2,2,
2,2,2,2,2,
2,2,2,2,2,
2,2,2,2,2,
3,3,3,3,3,
3,3,3,3,3,
3,3,3,3,3,
3,3,3,3,3,
3,3,3,3,3};
network_state state = {0};
state.input = data;
forward_convolutional_layer(l, state);
}
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
int old_w = l->w;
int old_h = l->h;
l->w = w;
l->h = h;
int out_w = convolutional_out_width(*l);
int out_h = convolutional_out_height(*l);
l->out_w = out_w;
l->out_h = out_h;
l->outputs = l->out_h * l->out_w * l->out_c;
l->inputs = l->w * l->h * l->c;
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
if(l->batch_normalize){
l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
}
if (l->xnor) {
//l->binary_input = realloc(l->inputs*l->batch, sizeof(float));
}
#ifdef GPU
if (old_w < w || old_h < h) {
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
if (l->batch_normalize) {
cuda_free(l->x_gpu);
cuda_free(l->x_norm_gpu);
l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
}
if (l->xnor) {
cuda_free(l->binary_input_gpu);
l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch);
}
}
#ifdef CUDNN
cudnn_convolutional_setup(l, cudnn_fastest);
#endif
#endif
l->workspace_size = get_workspace_size(*l);
#ifdef CUDNN
// check for excessive memory consumption
size_t free_byte;
size_t total_byte;
check_error(cudaMemGetInfo(&free_byte, &total_byte));
if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2);
cudnn_convolutional_setup(l, cudnn_smallest);
l->workspace_size = get_workspace_size(*l);
}
#endif
}
void add_bias(float *output, float *biases, int batch, int n, int size)
{
int i,j,b;
for(b = 0; b < batch; ++b){
for(i = 0; i < n; ++i){
for(j = 0; j < size; ++j){
output[(b*n + i)*size + j] += biases[i];
}
}
}
}
void scale_bias(float *output, float *scales, int batch, int n, int size)
{
int i,j,b;
for(b = 0; b < batch; ++b){
for(i = 0; i < n; ++i){
for(j = 0; j < size; ++j){
output[(b*n + i)*size + j] *= scales[i];
}
}
}
}
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
{
int i,b;
for(b = 0; b < batch; ++b){
for(i = 0; i < n; ++i){
bias_updates[i] += sum_array(delta+size*(i+b*n), size);
}
}
}
void gemm_nn_custom(int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
float *C, int ldc)
{
int i, j, k;
for (i = 0; i < M; ++i) {
for (k = 0; k < K; ++k) {
register float A_PART = ALPHA*A[i*lda + k];
//printf("\n weight = %f \n", A_PART);
for (j = 0; j < N; ++j) {
C[i*ldc + j] += A_PART*B[k*ldb + j];
}
}
}
}
void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) {
size_t i, counter;
counter = 0;
for (i = 0; i < size; i += size / filters) {
mean_arr[counter++] = fabs(src[i]);
}
}
/*
void float_to_bit(float *src, unsigned char *dst, size_t size) {
size_t dst_size = size / 8 + 1;
memset(dst, 0, dst_size);
size_t i, dst_i, dst_shift;
for (i = 0; i < size; ++i) {
if (src[i] > 0) set_bit(dst, i);
}
}
*/
void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) {
memset(dst, 0, size *sizeof(float));
size_t i, src_i, src_shift;
for (i = 0; i < size; ++i) {
float mean_val = 1;
if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]);
if(get_bit(src, i)) dst[i] = mean_val;
else dst[i] = -mean_val;
}
}
void binary_align_weights(convolutional_layer *l, size_t lda_align)
{
int m = l->n;
int k = l->size*l->size*l->c;
size_t new_lda = k + (lda_align - k%lda_align); // (k / 8 + 1) * 8;
binarize_weights(l->weights, m, k, l->binary_weights);
size_t align_weights_size = new_lda * m;
size_t align_bit_weights_size = align_weights_size / 8;// +1;
float *align_weights = calloc(align_weights_size, sizeof(float));
l->align_bit_weights = calloc(align_bit_weights_size, sizeof(char));
size_t i, j;
// align A without transpose
for (i = 0; i < m; ++i) {
for (j = 0; j < k; ++j) {
align_weights[i*new_lda + j] = l->binary_weights[i*k + j];
}
}
float_to_bit(align_weights, l->align_bit_weights, align_weights_size);
l->mean_arr = calloc(l->n, sizeof(float));
get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr);
free(align_weights);
}
size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align)
{
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
size_t t_intput_size = new_ldb * n;
size_t t_bit_input_size = t_intput_size / 8;// +1;
float *t_input = calloc(t_intput_size, sizeof(float));
//char *
*t_bit_input = calloc(t_bit_input_size, sizeof(char));
//printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n);
//printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb);
//printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k);
//printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb);
// transpose and align B
int i, j;
//#pragma omp parallel for
/*
for (i = 0; i < n; ++i) {
for (j = 0; j < k; ++j) {
t_input[i*new_ldb + j] = b[j*n + i];
}
}*/
//transpose_block_SSE4x4(float *A, float *B, const int n, const int m, const int lda, const int ldb, const int block_size)
//transpose_block(b, t_input, k, n, n, new_ldb, 16);
int blocksize = 1;
int mod_k = 1, mod_n = 1;
for (i = 2; i < 256; i *= 2)
if (k % i == 0) mod_k = i;
for (i = 2; i < 256; i *= 2)
if (n % i == 0) mod_n = i;
blocksize = (mod_k < mod_n) ? mod_k : mod_n;
transpose_block_SSE4x4(b, t_input, k, n, n, new_ldb, blocksize);
//transpose_block(b, t_input, k, n, n, new_ldb, blocksize);
//printf("\n blocksize = %d \n", blocksize);
float_to_bit(t_input, *t_bit_input, t_intput_size);
free(t_input);
return t_intput_size;
}
void forward_convolutional_layer(convolutional_layer l, network_state state)
{
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
int i;
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
if(l.xnor){
if (!l.align_bit_weights) {
binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
//printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights);
}
swap_binary(&l);
binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input);
state.input = l.binary_input;
}
int m = l.n;
int k = l.size*l.size*l.c;
int n = out_h*out_w;
float *a = l.weights;
float *b = state.workspace;
float *c = l.output;
static int u = 0;
u++;
for(i = 0; i < l.batch; ++i){
//im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
//gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
if (l.xnor) {
size_t output_size = l.outputs;
//float *count_output = calloc(output_size, sizeof(float));
//size_t bit_output_size = output_size / 8 + 1;
//char *bit_output = calloc(bit_output_size, sizeof(char));
size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col()
size_t bit_input_size = intput_size / 8 + 1;
//char *bit_input = calloc(bit_input_size, sizeof(char));
size_t weights_size = k * m; //l.size*l.size*l.c*l.n;
size_t bit_weights_size = weights_size / 8 + 1;
//char *bit_weights = calloc(bit_weights_size, sizeof(char));
//float *mean_arr = calloc(l.n, sizeof(float));
// test: float->bit->float
//get_mean_array(l.weights, weights_size, l.n, mean_arr);
//float_to_bit(l.weights, bit_weights, weights_size);
//memset(l.weights, 0, weights_size * sizeof(float));
//bit_to_float(bit_weights, l.weights, weights_size, l.n, mean_arr); // just for test float->bit->float
//float_to_bit(b, bit_input, intput_size);
//memset(b, 0, intput_size * sizeof(float));
//bit_to_float(bit_input, b, intput_size, 1, NULL); // just for test float->bit->float
// transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits)
{
/*
size_t ldb_align = 256;// 8;
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
size_t t_intput_size = new_ldb * n;
size_t t_bit_input_size = t_intput_size / 8;// +1;
float *t_input = calloc(t_intput_size, sizeof(float));
char *t_bit_input = calloc(t_bit_input_size, sizeof(char));
//printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n);
//printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb);
//printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k);
//printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb);
// transpose and align B
int i, j;
for (i = 0; i < n; ++i) {
for (j = 0; j < k; ++j) {
t_input[i*new_ldb + j] = b[j*n + i];
}
}
float_to_bit(t_input, t_bit_input, t_intput_size);
if (!l.align_bit_weights)
{
size_t align_weights_size = new_ldb * m;
size_t align_bit_weights_size = align_weights_size / 8;// +1;
float *align_weights = calloc(align_weights_size, sizeof(float));
l.align_bit_weights = calloc(align_bit_weights_size, sizeof(char));
// align A without transpose
for (i = 0; i < m; ++i) {
for (j = 0; j < k; ++j) {
align_weights[i*new_ldb + j] = a[i*k + j];
}
}
float_to_bit(align_weights, l.align_bit_weights, align_weights_size);
l.mean_arr = calloc(l.n, sizeof(float));
get_mean_array(align_weights, align_weights_size, l.n, l.mean_arr);
free(align_weights);
}
*/
size_t ldb_align = 256; // 256 bit for AVX2
size_t new_ldb = k + (ldb_align - k%ldb_align);
char *t_bit_input = NULL;
size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align);
gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr);
//gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr);
//free(t_input);
free(t_bit_input);
//free(align_bit_weights);
}
// for bit_input: (k * n)
//if (u == 8) gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); // last xnor layer
//else gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, NULL);
//gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr);
//printf("\n u = %d \n", u);
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
//int j;
//if (u != 8) for (j = 0; j < l.n; ++j) l.biases[j] = l.biases[j] / (mean_arr[j]*2);
//free(count_output);
//free(bit_input);
//free(bit_weights);
//free(mean_arr);
}
else {
gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n);
// bit-count to float
}
c += n*m;
state.input += l.c*l.h*l.w;
}
if(l.batch_normalize){
forward_batchnorm_layer(l, state);
}
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
//activate_array(l.output, m*n*l.batch, l.activation);
activate_array_cpu_custom(l.output, m*n*l.batch, l.activation);
if(l.binary || l.xnor) swap_binary(&l);
}
void backward_convolutional_layer(convolutional_layer l, network_state state)
{
int i;
int m = l.n;
int n = l.size*l.size*l.c;
int k = convolutional_out_height(l)*
convolutional_out_width(l);
gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
if(l.batch_normalize){
backward_batchnorm_layer(l, state);
}
for(i = 0; i < l.batch; ++i){
float *a = l.delta + i*m*k;
float *b = state.workspace;
float *c = l.weight_updates;
float *im = state.input+i*l.c*l.h*l.w;
im2col_cpu(im, l.c, l.h, l.w,
l.size, l.stride, l.pad, b);
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
if(state.delta){
a = l.weights;
b = l.delta + i*m*k;
c = state.workspace;
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
col2im_cpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
}
}
}
void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
{
int size = l.size*l.size*l.c*l.n;
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
scal_cpu(l.n, momentum, l.bias_updates, 1);
if(l.scales){
axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
scal_cpu(l.n, momentum, l.scale_updates, 1);
}
axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1);
axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
scal_cpu(size, momentum, l.weight_updates, 1);
}
image get_convolutional_weight(convolutional_layer l, int i)
{
int h = l.size;
int w = l.size;
int c = l.c;
return float_to_image(w,h,c,l.weights+i*h*w*c);
}
void rgbgr_weights(convolutional_layer l)
{
int i;
for(i = 0; i < l.n; ++i){
image im = get_convolutional_weight(l, i);
if (im.c == 3) {
rgbgr_image(im);
}
}
}
void rescale_weights(convolutional_layer l, float scale, float trans)
{
int i;
for(i = 0; i < l.n; ++i){
image im = get_convolutional_weight(l, i);
if (im.c == 3) {
scale_image(im, scale);
float sum = sum_array(im.data, im.w*im.h*im.c);
l.biases[i] += sum*trans;
}
}
}
image *get_weights(convolutional_layer l)
{
image *weights = calloc(l.n, sizeof(image));
int i;
for(i = 0; i < l.n; ++i){
weights[i] = copy_image(get_convolutional_weight(l, i));
//normalize_image(weights[i]);
}
return weights;
}
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
{
image *single_weights = get_weights(l);
show_images(single_weights, l.n, window);
image delta = get_convolutional_image(l);
image dc = collapse_image_layers(delta, 1);
char buff[256];
sprintf(buff, "%s: Output", window);
//show_image(dc, buff);
//save_image(dc, buff);
free_image(dc);
return single_weights;
}