mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
287 lines
11 KiB
287 lines
11 KiB
#include "detection_layer.h" |
|
#include "activations.h" |
|
#include "softmax_layer.h" |
|
#include "blas.h" |
|
#include "box.h" |
|
#include "cuda.h" |
|
#include "utils.h" |
|
#include <stdio.h> |
|
#include <assert.h> |
|
#include <string.h> |
|
#include <stdlib.h> |
|
|
|
detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore) |
|
{ |
|
detection_layer l = {0}; |
|
l.type = DETECTION; |
|
|
|
l.n = n; |
|
l.batch = batch; |
|
l.inputs = inputs; |
|
l.classes = classes; |
|
l.coords = coords; |
|
l.rescore = rescore; |
|
l.side = side; |
|
l.w = side; |
|
l.h = side; |
|
assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs); |
|
l.cost = calloc(1, sizeof(float)); |
|
l.outputs = l.inputs; |
|
l.truths = l.side*l.side*(1+l.coords+l.classes); |
|
l.output = calloc(batch*l.outputs, sizeof(float)); |
|
l.delta = calloc(batch*l.outputs, sizeof(float)); |
|
|
|
l.forward = forward_detection_layer; |
|
l.backward = backward_detection_layer; |
|
#ifdef GPU |
|
l.forward_gpu = forward_detection_layer_gpu; |
|
l.backward_gpu = backward_detection_layer_gpu; |
|
l.output_gpu = cuda_make_array(l.output, batch*l.outputs); |
|
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
|
#endif |
|
|
|
fprintf(stderr, "Detection Layer\n"); |
|
srand(0); |
|
|
|
return l; |
|
} |
|
|
|
void forward_detection_layer(const detection_layer l, network_state state) |
|
{ |
|
int locations = l.side*l.side; |
|
int i,j; |
|
memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); |
|
//if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1); |
|
int b; |
|
if (l.softmax){ |
|
for(b = 0; b < l.batch; ++b){ |
|
int index = b*l.inputs; |
|
for (i = 0; i < locations; ++i) { |
|
int offset = i*l.classes; |
|
softmax(l.output + index + offset, l.classes, 1, |
|
l.output + index + offset); |
|
} |
|
} |
|
} |
|
if(state.train){ |
|
float avg_iou = 0; |
|
float avg_cat = 0; |
|
float avg_allcat = 0; |
|
float avg_obj = 0; |
|
float avg_anyobj = 0; |
|
int count = 0; |
|
*(l.cost) = 0; |
|
int size = l.inputs * l.batch; |
|
memset(l.delta, 0, size * sizeof(float)); |
|
for (b = 0; b < l.batch; ++b){ |
|
int index = b*l.inputs; |
|
for (i = 0; i < locations; ++i) { |
|
int truth_index = (b*locations + i)*(1+l.coords+l.classes); |
|
int is_obj = state.truth[truth_index]; |
|
for (j = 0; j < l.n; ++j) { |
|
int p_index = index + locations*l.classes + i*l.n + j; |
|
l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]); |
|
*(l.cost) += l.noobject_scale*pow(l.output[p_index], 2); |
|
avg_anyobj += l.output[p_index]; |
|
} |
|
|
|
int best_index = -1; |
|
float best_iou = 0; |
|
float best_rmse = 20; |
|
|
|
if (!is_obj){ |
|
continue; |
|
} |
|
|
|
int class_index = index + i*l.classes; |
|
for(j = 0; j < l.classes; ++j) { |
|
l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]); |
|
*(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2); |
|
if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; |
|
avg_allcat += l.output[class_index+j]; |
|
} |
|
|
|
box truth = float_to_box(state.truth + truth_index + 1 + l.classes); |
|
truth.x /= l.side; |
|
truth.y /= l.side; |
|
|
|
for(j = 0; j < l.n; ++j){ |
|
int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords; |
|
box out = float_to_box(l.output + box_index); |
|
out.x /= l.side; |
|
out.y /= l.side; |
|
|
|
if (l.sqrt){ |
|
out.w = out.w*out.w; |
|
out.h = out.h*out.h; |
|
} |
|
|
|
float iou = box_iou(out, truth); |
|
//iou = 0; |
|
float rmse = box_rmse(out, truth); |
|
if(best_iou > 0 || iou > 0){ |
|
if(iou > best_iou){ |
|
best_iou = iou; |
|
best_index = j; |
|
} |
|
}else{ |
|
if(rmse < best_rmse){ |
|
best_rmse = rmse; |
|
best_index = j; |
|
} |
|
} |
|
} |
|
|
|
if(l.forced){ |
|
if(truth.w*truth.h < .1){ |
|
best_index = 1; |
|
}else{ |
|
best_index = 0; |
|
} |
|
} |
|
if(l.random && *(state.net.seen) < 64000){ |
|
best_index = rand()%l.n; |
|
} |
|
|
|
int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords; |
|
int tbox_index = truth_index + 1 + l.classes; |
|
|
|
box out = float_to_box(l.output + box_index); |
|
out.x /= l.side; |
|
out.y /= l.side; |
|
if (l.sqrt) { |
|
out.w = out.w*out.w; |
|
out.h = out.h*out.h; |
|
} |
|
float iou = box_iou(out, truth); |
|
|
|
//printf("%d,", best_index); |
|
int p_index = index + locations*l.classes + i*l.n + best_index; |
|
*(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2); |
|
*(l.cost) += l.object_scale * pow(1-l.output[p_index], 2); |
|
avg_obj += l.output[p_index]; |
|
l.delta[p_index] = l.object_scale * (1.-l.output[p_index]); |
|
|
|
if(l.rescore){ |
|
l.delta[p_index] = l.object_scale * (iou - l.output[p_index]); |
|
} |
|
|
|
l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]); |
|
l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]); |
|
l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]); |
|
l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]); |
|
if(l.sqrt){ |
|
l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]); |
|
l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]); |
|
} |
|
|
|
*(l.cost) += pow(1-iou, 2); |
|
avg_iou += iou; |
|
++count; |
|
} |
|
} |
|
|
|
if(0){ |
|
float *costs = calloc(l.batch*locations*l.n, sizeof(float)); |
|
for (b = 0; b < l.batch; ++b) { |
|
int index = b*l.inputs; |
|
for (i = 0; i < locations; ++i) { |
|
for (j = 0; j < l.n; ++j) { |
|
int p_index = index + locations*l.classes + i*l.n + j; |
|
costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index]; |
|
} |
|
} |
|
} |
|
int indexes[100]; |
|
top_k(costs, l.batch*locations*l.n, 100, indexes); |
|
float cutoff = costs[indexes[99]]; |
|
for (b = 0; b < l.batch; ++b) { |
|
int index = b*l.inputs; |
|
for (i = 0; i < locations; ++i) { |
|
for (j = 0; j < l.n; ++j) { |
|
int p_index = index + locations*l.classes + i*l.n + j; |
|
if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0; |
|
} |
|
} |
|
} |
|
free(costs); |
|
} |
|
|
|
|
|
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); |
|
|
|
|
|
printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); |
|
//if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); |
|
} |
|
} |
|
|
|
void backward_detection_layer(const detection_layer l, network_state state) |
|
{ |
|
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); |
|
} |
|
|
|
void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
|
{ |
|
int i,j,n; |
|
float *predictions = l.output; |
|
//int per_cell = 5*num+classes; |
|
for (i = 0; i < l.side*l.side; ++i){ |
|
int row = i / l.side; |
|
int col = i % l.side; |
|
for(n = 0; n < l.n; ++n){ |
|
int index = i*l.n + n; |
|
int p_index = l.side*l.side*l.classes + i*l.n + n; |
|
float scale = predictions[p_index]; |
|
int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4; |
|
boxes[index].x = (predictions[box_index + 0] + col) / l.side * w; |
|
boxes[index].y = (predictions[box_index + 1] + row) / l.side * h; |
|
boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w; |
|
boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h; |
|
for(j = 0; j < l.classes; ++j){ |
|
int class_index = i*l.classes; |
|
float prob = scale*predictions[class_index+j]; |
|
probs[index][j] = (prob > thresh) ? prob : 0; |
|
} |
|
if(only_objectness){ |
|
probs[index][0] = scale; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef GPU |
|
|
|
void forward_detection_layer_gpu(const detection_layer l, network_state state) |
|
{ |
|
if(!state.train){ |
|
copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); |
|
return; |
|
} |
|
|
|
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
|
float *truth_cpu = 0; |
|
if(state.truth){ |
|
int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes); |
|
truth_cpu = calloc(num_truth, sizeof(float)); |
|
cuda_pull_array(state.truth, truth_cpu, num_truth); |
|
} |
|
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
|
network_state cpu_state = state; |
|
cpu_state.train = state.train; |
|
cpu_state.truth = truth_cpu; |
|
cpu_state.input = in_cpu; |
|
forward_detection_layer(l, cpu_state); |
|
cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); |
|
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
|
free(cpu_state.input); |
|
if(cpu_state.truth) free(cpu_state.truth); |
|
} |
|
|
|
void backward_detection_layer_gpu(detection_layer l, network_state state) |
|
{ |
|
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); |
|
//copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1); |
|
} |
|
#endif |
|
|
|
|