mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1251 lines
38 KiB
1251 lines
38 KiB
#include "darknet.h" |
|
|
|
#include <stdio.h> |
|
#include <time.h> |
|
#include <assert.h> |
|
|
|
#include "network.h" |
|
#include "image.h" |
|
#include "data.h" |
|
#include "utils.h" |
|
#include "blas.h" |
|
|
|
#include "crop_layer.h" |
|
#include "connected_layer.h" |
|
#include "gru_layer.h" |
|
#include "rnn_layer.h" |
|
#include "crnn_layer.h" |
|
#include "conv_lstm_layer.h" |
|
#include "local_layer.h" |
|
#include "convolutional_layer.h" |
|
#include "activation_layer.h" |
|
#include "detection_layer.h" |
|
#include "region_layer.h" |
|
#include "normalization_layer.h" |
|
#include "batchnorm_layer.h" |
|
#include "maxpool_layer.h" |
|
#include "reorg_layer.h" |
|
#include "reorg_old_layer.h" |
|
#include "avgpool_layer.h" |
|
#include "cost_layer.h" |
|
#include "softmax_layer.h" |
|
#include "dropout_layer.h" |
|
#include "route_layer.h" |
|
#include "shortcut_layer.h" |
|
#include "scale_channels_layer.h" |
|
#include "yolo_layer.h" |
|
#include "gaussian_yolo_layer.h" |
|
#include "upsample_layer.h" |
|
#include "parser.h" |
|
|
|
load_args get_base_args(network *net) |
|
{ |
|
load_args args = { 0 }; |
|
args.w = net->w; |
|
args.h = net->h; |
|
args.size = net->w; |
|
|
|
args.min = net->min_crop; |
|
args.max = net->max_crop; |
|
args.angle = net->angle; |
|
args.aspect = net->aspect; |
|
args.exposure = net->exposure; |
|
args.center = net->center; |
|
args.saturation = net->saturation; |
|
args.hue = net->hue; |
|
return args; |
|
} |
|
|
|
int get_current_batch(network net) |
|
{ |
|
int batch_num = (*net.seen)/(net.batch*net.subdivisions); |
|
return batch_num; |
|
} |
|
|
|
void reset_momentum(network net) |
|
{ |
|
if (net.momentum == 0) return; |
|
net.learning_rate = 0; |
|
net.momentum = 0; |
|
net.decay = 0; |
|
#ifdef GPU |
|
//if(net.gpu_index >= 0) update_network_gpu(net); |
|
#endif |
|
} |
|
|
|
void reset_network_state(network *net, int b) |
|
{ |
|
int i; |
|
for (i = 0; i < net->n; ++i) { |
|
#ifdef GPU |
|
layer l = net->layers[i]; |
|
if (l.state_gpu) { |
|
fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1); |
|
} |
|
if (l.h_gpu) { |
|
fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1); |
|
} |
|
#endif |
|
} |
|
} |
|
|
|
void reset_rnn(network *net) |
|
{ |
|
reset_network_state(net, 0); |
|
} |
|
|
|
float get_current_seq_subdivisions(network net) |
|
{ |
|
int sequence_subdivisions = net.init_sequential_subdivisions; |
|
|
|
if (net.num_steps > 0) |
|
{ |
|
int batch_num = get_current_batch(net); |
|
int i; |
|
for (i = 0; i < net.num_steps; ++i) { |
|
if (net.steps[i] > batch_num) break; |
|
sequence_subdivisions *= net.seq_scales[i]; |
|
} |
|
} |
|
if (sequence_subdivisions < 1) sequence_subdivisions = 1; |
|
if (sequence_subdivisions > net.subdivisions) sequence_subdivisions = net.subdivisions; |
|
return sequence_subdivisions; |
|
} |
|
|
|
int get_sequence_value(network net) |
|
{ |
|
int sequence = 1; |
|
if (net.sequential_subdivisions != 0) sequence = net.subdivisions / net.sequential_subdivisions; |
|
if (sequence < 1) sequence = 1; |
|
return sequence; |
|
} |
|
|
|
float get_current_rate(network net) |
|
{ |
|
int batch_num = get_current_batch(net); |
|
int i; |
|
float rate; |
|
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); |
|
switch (net.policy) { |
|
case CONSTANT: |
|
return net.learning_rate; |
|
case STEP: |
|
return net.learning_rate * pow(net.scale, batch_num/net.step); |
|
case STEPS: |
|
rate = net.learning_rate; |
|
for(i = 0; i < net.num_steps; ++i){ |
|
if(net.steps[i] > batch_num) return rate; |
|
rate *= net.scales[i]; |
|
//if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net); |
|
} |
|
return rate; |
|
case EXP: |
|
return net.learning_rate * pow(net.gamma, batch_num); |
|
case POLY: |
|
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
|
//if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); |
|
//return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
|
case RANDOM: |
|
return net.learning_rate * pow(rand_uniform(0,1), net.power); |
|
case SIG: |
|
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); |
|
case SGDR: |
|
{ |
|
int last_iteration_start = 0; |
|
int cycle_size = net.batches_per_cycle; |
|
while ((last_iteration_start + cycle_size) < batch_num) |
|
{ |
|
last_iteration_start += cycle_size; |
|
cycle_size *= net.batches_cycle_mult; |
|
} |
|
rate = net.learning_rate_min + |
|
0.5*(net.learning_rate - net.learning_rate_min) |
|
* (1. + cos((float)(batch_num - last_iteration_start)*3.14159265 / cycle_size)); |
|
|
|
return rate; |
|
} |
|
default: |
|
fprintf(stderr, "Policy is weird!\n"); |
|
return net.learning_rate; |
|
} |
|
} |
|
|
|
char *get_layer_string(LAYER_TYPE a) |
|
{ |
|
switch(a){ |
|
case CONVOLUTIONAL: |
|
return "convolutional"; |
|
case ACTIVE: |
|
return "activation"; |
|
case LOCAL: |
|
return "local"; |
|
case DECONVOLUTIONAL: |
|
return "deconvolutional"; |
|
case CONNECTED: |
|
return "connected"; |
|
case RNN: |
|
return "rnn"; |
|
case GRU: |
|
return "gru"; |
|
case LSTM: |
|
return "lstm"; |
|
case CRNN: |
|
return "crnn"; |
|
case MAXPOOL: |
|
return "maxpool"; |
|
case REORG: |
|
return "reorg"; |
|
case AVGPOOL: |
|
return "avgpool"; |
|
case SOFTMAX: |
|
return "softmax"; |
|
case DETECTION: |
|
return "detection"; |
|
case REGION: |
|
return "region"; |
|
case YOLO: |
|
return "yolo"; |
|
case GAUSSIAN_YOLO: |
|
return "Gaussian_yolo"; |
|
case DROPOUT: |
|
return "dropout"; |
|
case CROP: |
|
return "crop"; |
|
case COST: |
|
return "cost"; |
|
case ROUTE: |
|
return "route"; |
|
case SHORTCUT: |
|
return "shortcut"; |
|
case SCALE_CHANNELS: |
|
return "scale_channels"; |
|
case SAM: |
|
return "sam"; |
|
case NORMALIZATION: |
|
return "normalization"; |
|
case BATCHNORM: |
|
return "batchnorm"; |
|
default: |
|
break; |
|
} |
|
return "none"; |
|
} |
|
|
|
network make_network(int n) |
|
{ |
|
network net = {0}; |
|
net.n = n; |
|
net.layers = (layer*)calloc(net.n, sizeof(layer)); |
|
net.seen = (uint64_t*)calloc(1, sizeof(uint64_t)); |
|
#ifdef GPU |
|
net.input_gpu = (float**)calloc(1, sizeof(float*)); |
|
net.truth_gpu = (float**)calloc(1, sizeof(float*)); |
|
|
|
net.input16_gpu = (float**)calloc(1, sizeof(float*)); |
|
net.output16_gpu = (float**)calloc(1, sizeof(float*)); |
|
net.max_input16_size = (size_t*)calloc(1, sizeof(size_t)); |
|
net.max_output16_size = (size_t*)calloc(1, sizeof(size_t)); |
|
#endif |
|
return net; |
|
} |
|
|
|
void forward_network(network net, network_state state) |
|
{ |
|
state.workspace = net.workspace; |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
state.index = i; |
|
layer l = net.layers[i]; |
|
if(l.delta && state.train){ |
|
scal_cpu(l.outputs * l.batch, 0, l.delta, 1); |
|
} |
|
//double time = get_time_point(); |
|
l.forward(l, state); |
|
//printf("%d - Predicted in %lf milli-seconds.\n", i, ((double)get_time_point() - time) / 1000); |
|
state.input = l.output; |
|
} |
|
} |
|
|
|
void update_network(network net) |
|
{ |
|
int i; |
|
int update_batch = net.batch*net.subdivisions; |
|
float rate = get_current_rate(net); |
|
for(i = 0; i < net.n; ++i){ |
|
layer l = net.layers[i]; |
|
if(l.update){ |
|
l.update(l, update_batch, rate, net.momentum, net.decay); |
|
} |
|
} |
|
} |
|
|
|
float *get_network_output(network net) |
|
{ |
|
#ifdef GPU |
|
if (gpu_index >= 0) return get_network_output_gpu(net); |
|
#endif |
|
int i; |
|
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
|
return net.layers[i].output; |
|
} |
|
|
|
float get_network_cost(network net) |
|
{ |
|
int i; |
|
float sum = 0; |
|
int count = 0; |
|
for(i = 0; i < net.n; ++i){ |
|
if(net.layers[i].cost){ |
|
sum += net.layers[i].cost[0]; |
|
++count; |
|
} |
|
} |
|
return sum/count; |
|
} |
|
|
|
int get_predicted_class_network(network net) |
|
{ |
|
float *out = get_network_output(net); |
|
int k = get_network_output_size(net); |
|
return max_index(out, k); |
|
} |
|
|
|
void backward_network(network net, network_state state) |
|
{ |
|
int i; |
|
float *original_input = state.input; |
|
float *original_delta = state.delta; |
|
state.workspace = net.workspace; |
|
for(i = net.n-1; i >= 0; --i){ |
|
state.index = i; |
|
if(i == 0){ |
|
state.input = original_input; |
|
state.delta = original_delta; |
|
}else{ |
|
layer prev = net.layers[i-1]; |
|
state.input = prev.output; |
|
state.delta = prev.delta; |
|
} |
|
layer l = net.layers[i]; |
|
if (l.stopbackward) break; |
|
if (l.onlyforward) continue; |
|
l.backward(l, state); |
|
} |
|
} |
|
|
|
float train_network_datum(network net, float *x, float *y) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
|
#endif |
|
network_state state; |
|
*net.seen += net.batch; |
|
state.index = 0; |
|
state.net = net; |
|
state.input = x; |
|
state.delta = 0; |
|
state.truth = y; |
|
state.train = 1; |
|
forward_network(net, state); |
|
backward_network(net, state); |
|
float error = get_network_cost(net); |
|
if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net); |
|
return error; |
|
} |
|
|
|
float train_network_sgd(network net, data d, int n) |
|
{ |
|
int batch = net.batch; |
|
float* X = (float*)calloc(batch * d.X.cols, sizeof(float)); |
|
float* y = (float*)calloc(batch * d.y.cols, sizeof(float)); |
|
|
|
int i; |
|
float sum = 0; |
|
for(i = 0; i < n; ++i){ |
|
get_random_batch(d, batch, X, y); |
|
net.current_subdivision = i; |
|
float err = train_network_datum(net, X, y); |
|
sum += err; |
|
} |
|
free(X); |
|
free(y); |
|
return (float)sum/(n*batch); |
|
} |
|
|
|
float train_network(network net, data d) |
|
{ |
|
return train_network_waitkey(net, d, 0); |
|
} |
|
|
|
float train_network_waitkey(network net, data d, int wait_key) |
|
{ |
|
assert(d.X.rows % net.batch == 0); |
|
int batch = net.batch; |
|
int n = d.X.rows / batch; |
|
float* X = (float*)calloc(batch * d.X.cols, sizeof(float)); |
|
float* y = (float*)calloc(batch * d.y.cols, sizeof(float)); |
|
|
|
int i; |
|
float sum = 0; |
|
for(i = 0; i < n; ++i){ |
|
get_next_batch(d, batch, i*batch, X, y); |
|
net.current_subdivision = i; |
|
float err = train_network_datum(net, X, y); |
|
sum += err; |
|
if(wait_key) wait_key_cv(5); |
|
} |
|
free(X); |
|
free(y); |
|
return (float)sum/(n*batch); |
|
} |
|
|
|
|
|
float train_network_batch(network net, data d, int n) |
|
{ |
|
int i,j; |
|
network_state state; |
|
state.index = 0; |
|
state.net = net; |
|
state.train = 1; |
|
state.delta = 0; |
|
float sum = 0; |
|
int batch = 2; |
|
for(i = 0; i < n; ++i){ |
|
for(j = 0; j < batch; ++j){ |
|
int index = random_gen()%d.X.rows; |
|
state.input = d.X.vals[index]; |
|
state.truth = d.y.vals[index]; |
|
forward_network(net, state); |
|
backward_network(net, state); |
|
sum += get_network_cost(net); |
|
} |
|
update_network(net); |
|
} |
|
return (float)sum/(n*batch); |
|
} |
|
|
|
int recalculate_workspace_size(network *net) |
|
{ |
|
#ifdef GPU |
|
cuda_set_device(net->gpu_index); |
|
if (gpu_index >= 0) cuda_free(net->workspace); |
|
#endif |
|
int i; |
|
size_t workspace_size = 0; |
|
for (i = 0; i < net->n; ++i) { |
|
layer l = net->layers[i]; |
|
//printf(" %d: layer = %d,", i, l.type); |
|
if (l.type == CONVOLUTIONAL) { |
|
l.workspace_size = get_convolutional_workspace_size(l); |
|
} |
|
else if (l.type == CONNECTED) { |
|
l.workspace_size = get_connected_workspace_size(l); |
|
} |
|
if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
|
net->layers[i] = l; |
|
} |
|
|
|
#ifdef GPU |
|
if (gpu_index >= 0) { |
|
printf("\n try to allocate additional workspace_size = %1.2f MB \n", (float)workspace_size / 1000000); |
|
net->workspace = cuda_make_array(0, workspace_size / sizeof(float) + 1); |
|
printf(" CUDA allocate done! \n"); |
|
} |
|
else { |
|
free(net->workspace); |
|
net->workspace = (float*)calloc(1, workspace_size); |
|
} |
|
#else |
|
free(net->workspace); |
|
net->workspace = (float*)calloc(1, workspace_size); |
|
#endif |
|
//fprintf(stderr, " Done!\n"); |
|
return 0; |
|
} |
|
|
|
void set_batch_network(network *net, int b) |
|
{ |
|
net->batch = b; |
|
int i; |
|
for(i = 0; i < net->n; ++i){ |
|
net->layers[i].batch = b; |
|
|
|
#ifdef CUDNN |
|
if(net->layers[i].type == CONVOLUTIONAL){ |
|
cudnn_convolutional_setup(net->layers + i, cudnn_fastest); |
|
} |
|
else if (net->layers[i].type == MAXPOOL) { |
|
cudnn_maxpool_setup(net->layers + i); |
|
} |
|
#endif |
|
|
|
} |
|
recalculate_workspace_size(net); // recalculate workspace size |
|
} |
|
|
|
int resize_network(network *net, int w, int h) |
|
{ |
|
#ifdef GPU |
|
cuda_set_device(net->gpu_index); |
|
if(gpu_index >= 0){ |
|
cuda_free(net->workspace); |
|
if (net->input_gpu) { |
|
cuda_free(*net->input_gpu); |
|
*net->input_gpu = 0; |
|
cuda_free(*net->truth_gpu); |
|
*net->truth_gpu = 0; |
|
} |
|
|
|
if (net->input_state_gpu) cuda_free(net->input_state_gpu); |
|
if (net->input_pinned_cpu) { |
|
if (net->input_pinned_cpu_flag) cudaFreeHost(net->input_pinned_cpu); |
|
else free(net->input_pinned_cpu); |
|
} |
|
} |
|
#endif |
|
int i; |
|
//if(w == net->w && h == net->h) return 0; |
|
net->w = w; |
|
net->h = h; |
|
int inputs = 0; |
|
size_t workspace_size = 0; |
|
//fprintf(stderr, "Resizing to %d x %d...\n", w, h); |
|
//fflush(stderr); |
|
for (i = 0; i < net->n; ++i){ |
|
layer l = net->layers[i]; |
|
//printf(" %d: layer = %d,", i, l.type); |
|
if(l.type == CONVOLUTIONAL){ |
|
resize_convolutional_layer(&l, w, h); |
|
} |
|
else if (l.type == CRNN) { |
|
resize_crnn_layer(&l, w, h); |
|
}else if (l.type == CONV_LSTM) { |
|
resize_conv_lstm_layer(&l, w, h); |
|
}else if(l.type == CROP){ |
|
resize_crop_layer(&l, w, h); |
|
}else if(l.type == MAXPOOL){ |
|
resize_maxpool_layer(&l, w, h); |
|
}else if(l.type == REGION){ |
|
resize_region_layer(&l, w, h); |
|
}else if (l.type == YOLO) { |
|
resize_yolo_layer(&l, w, h); |
|
}else if (l.type == GAUSSIAN_YOLO) { |
|
resize_gaussian_yolo_layer(&l, w, h); |
|
}else if(l.type == ROUTE){ |
|
resize_route_layer(&l, net); |
|
}else if (l.type == SHORTCUT) { |
|
resize_shortcut_layer(&l, w, h); |
|
//}else if (l.type == SCALE_CHANNELS) { |
|
// resize_scale_channels_layer(&l, w, h); |
|
}else if (l.type == UPSAMPLE) { |
|
resize_upsample_layer(&l, w, h); |
|
}else if(l.type == REORG){ |
|
resize_reorg_layer(&l, w, h); |
|
} else if (l.type == REORG_OLD) { |
|
resize_reorg_old_layer(&l, w, h); |
|
}else if(l.type == AVGPOOL){ |
|
resize_avgpool_layer(&l, w, h); |
|
}else if(l.type == NORMALIZATION){ |
|
resize_normalization_layer(&l, w, h); |
|
}else if(l.type == COST){ |
|
resize_cost_layer(&l, inputs); |
|
}else{ |
|
fprintf(stderr, "Resizing type %d \n", (int)l.type); |
|
error("Cannot resize this type of layer"); |
|
} |
|
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
|
inputs = l.outputs; |
|
net->layers[i] = l; |
|
w = l.out_w; |
|
h = l.out_h; |
|
if(l.type == AVGPOOL) break; |
|
} |
|
#ifdef GPU |
|
const int size = get_network_input_size(*net) * net->batch; |
|
if(gpu_index >= 0){ |
|
printf(" try to allocate additional workspace_size = %1.2f MB \n", (float)workspace_size / 1000000); |
|
net->workspace = cuda_make_array(0, workspace_size/sizeof(float) + 1); |
|
net->input_state_gpu = cuda_make_array(0, size); |
|
if (cudaSuccess == cudaHostAlloc(&net->input_pinned_cpu, size * sizeof(float), cudaHostRegisterMapped)) |
|
net->input_pinned_cpu_flag = 1; |
|
else { |
|
cudaGetLastError(); // reset CUDA-error |
|
net->input_pinned_cpu = (float*)calloc(size, sizeof(float)); |
|
net->input_pinned_cpu_flag = 0; |
|
} |
|
printf(" CUDA allocate done! \n"); |
|
}else { |
|
free(net->workspace); |
|
net->workspace = (float*)calloc(1, workspace_size); |
|
if(!net->input_pinned_cpu_flag) |
|
net->input_pinned_cpu = (float*)realloc(net->input_pinned_cpu, size * sizeof(float)); |
|
} |
|
#else |
|
free(net->workspace); |
|
net->workspace = (float*)calloc(1, workspace_size); |
|
#endif |
|
//fprintf(stderr, " Done!\n"); |
|
return 0; |
|
} |
|
|
|
int get_network_output_size(network net) |
|
{ |
|
int i; |
|
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
|
return net.layers[i].outputs; |
|
} |
|
|
|
int get_network_input_size(network net) |
|
{ |
|
return net.layers[0].inputs; |
|
} |
|
|
|
detection_layer get_network_detection_layer(network net) |
|
{ |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
if(net.layers[i].type == DETECTION){ |
|
return net.layers[i]; |
|
} |
|
} |
|
fprintf(stderr, "Detection layer not found!!\n"); |
|
detection_layer l = { (LAYER_TYPE)0 }; |
|
return l; |
|
} |
|
|
|
image get_network_image_layer(network net, int i) |
|
{ |
|
layer l = net.layers[i]; |
|
if (l.out_w && l.out_h && l.out_c){ |
|
return float_to_image(l.out_w, l.out_h, l.out_c, l.output); |
|
} |
|
image def = {0}; |
|
return def; |
|
} |
|
|
|
layer* get_network_layer(network* net, int i) |
|
{ |
|
return net->layers + i; |
|
} |
|
|
|
image get_network_image(network net) |
|
{ |
|
int i; |
|
for(i = net.n-1; i >= 0; --i){ |
|
image m = get_network_image_layer(net, i); |
|
if(m.h != 0) return m; |
|
} |
|
image def = {0}; |
|
return def; |
|
} |
|
|
|
void visualize_network(network net) |
|
{ |
|
image *prev = 0; |
|
int i; |
|
char buff[256]; |
|
for(i = 0; i < net.n; ++i){ |
|
sprintf(buff, "Layer %d", i); |
|
layer l = net.layers[i]; |
|
if(l.type == CONVOLUTIONAL){ |
|
prev = visualize_convolutional_layer(l, buff, prev); |
|
} |
|
} |
|
} |
|
|
|
void top_predictions(network net, int k, int *index) |
|
{ |
|
int size = get_network_output_size(net); |
|
float *out = get_network_output(net); |
|
top_k(out, size, k, index); |
|
} |
|
|
|
// A version of network_predict that uses a pointer for the network |
|
// struct to make the python binding work properly. |
|
float *network_predict_ptr(network *net, float *input) |
|
{ |
|
return network_predict(*net, input); |
|
} |
|
|
|
float *network_predict(network net, float *input) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0) return network_predict_gpu(net, input); |
|
#endif |
|
|
|
network_state state; |
|
state.net = net; |
|
state.index = 0; |
|
state.input = input; |
|
state.truth = 0; |
|
state.train = 0; |
|
state.delta = 0; |
|
forward_network(net, state); |
|
float *out = get_network_output(net); |
|
return out; |
|
} |
|
|
|
int num_detections(network *net, float thresh) |
|
{ |
|
int i; |
|
int s = 0; |
|
for (i = 0; i < net->n; ++i) { |
|
layer l = net->layers[i]; |
|
if (l.type == YOLO) { |
|
s += yolo_num_detections(l, thresh); |
|
} |
|
if (l.type == GAUSSIAN_YOLO) { |
|
s += gaussian_yolo_num_detections(l, thresh); |
|
} |
|
if (l.type == DETECTION || l.type == REGION) { |
|
s += l.w*l.h*l.n; |
|
} |
|
} |
|
return s; |
|
} |
|
|
|
detection *make_network_boxes(network *net, float thresh, int *num) |
|
{ |
|
layer l = net->layers[net->n - 1]; |
|
int i; |
|
int nboxes = num_detections(net, thresh); |
|
if (num) *num = nboxes; |
|
detection* dets = (detection*)calloc(nboxes, sizeof(detection)); |
|
for (i = 0; i < nboxes; ++i) { |
|
dets[i].prob = (float*)calloc(l.classes, sizeof(float)); |
|
// tx,ty,tw,th uncertainty |
|
dets[i].uc = (float*)calloc(4, sizeof(float)); // Gaussian_YOLOv3 |
|
if (l.coords > 4) { |
|
dets[i].mask = (float*)calloc(l.coords - 4, sizeof(float)); |
|
} |
|
} |
|
return dets; |
|
} |
|
|
|
|
|
void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter) |
|
{ |
|
box* boxes = (box*)calloc(l.w * l.h * l.n, sizeof(box)); |
|
float** probs = (float**)calloc(l.w * l.h * l.n, sizeof(float*)); |
|
int i, j; |
|
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)calloc(l.classes, sizeof(float)); |
|
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map); |
|
for (j = 0; j < l.w*l.h*l.n; ++j) { |
|
dets[j].classes = l.classes; |
|
dets[j].bbox = boxes[j]; |
|
dets[j].objectness = 1; |
|
for (i = 0; i < l.classes; ++i) { |
|
dets[j].prob[i] = probs[j][i]; |
|
} |
|
} |
|
|
|
free(boxes); |
|
free_ptrs((void **)probs, l.w*l.h*l.n); |
|
|
|
//correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative); |
|
correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter); |
|
} |
|
|
|
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter) |
|
{ |
|
int prev_classes = -1; |
|
int j; |
|
for (j = 0; j < net->n; ++j) { |
|
layer l = net->layers[j]; |
|
if (l.type == YOLO) { |
|
int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter); |
|
dets += count; |
|
if (prev_classes < 0) prev_classes = l.classes; |
|
else if (prev_classes != l.classes) { |
|
printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n", |
|
prev_classes, l.classes); |
|
} |
|
} |
|
if (l.type == GAUSSIAN_YOLO) { |
|
int count = get_gaussian_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter); |
|
dets += count; |
|
} |
|
if (l.type == REGION) { |
|
custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter); |
|
//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets); |
|
dets += l.w*l.h*l.n; |
|
} |
|
if (l.type == DETECTION) { |
|
get_detection_detections(l, w, h, thresh, dets); |
|
dets += l.w*l.h*l.n; |
|
} |
|
} |
|
} |
|
|
|
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter) |
|
{ |
|
detection *dets = make_network_boxes(net, thresh, num); |
|
fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter); |
|
return dets; |
|
} |
|
|
|
void free_detections(detection *dets, int n) |
|
{ |
|
int i; |
|
for (i = 0; i < n; ++i) { |
|
free(dets[i].prob); |
|
if (dets[i].uc) free(dets[i].uc); |
|
if (dets[i].mask) free(dets[i].mask); |
|
} |
|
free(dets); |
|
} |
|
|
|
// JSON format: |
|
//{ |
|
// "frame_id":8990, |
|
// "objects":[ |
|
// {"class_id":4, "name":"aeroplane", "relative coordinates":{"center_x":0.398831, "center_y":0.630203, "width":0.057455, "height":0.020396}, "confidence":0.793070}, |
|
// {"class_id":14, "name":"bird", "relative coordinates":{"center_x":0.398831, "center_y":0.630203, "width":0.057455, "height":0.020396}, "confidence":0.265497} |
|
// ] |
|
//}, |
|
|
|
char *detection_to_json(detection *dets, int nboxes, int classes, char **names, long long int frame_id, char *filename) |
|
{ |
|
const float thresh = 0.005; // function get_network_boxes() has already filtred dets by actual threshold |
|
|
|
char *send_buf = (char *)calloc(1024, sizeof(char)); |
|
if (filename) { |
|
sprintf(send_buf, "{\n \"frame_id\":%lld, \n \"filename\":\"%s\", \n \"objects\": [ \n", frame_id, filename); |
|
} |
|
else { |
|
sprintf(send_buf, "{\n \"frame_id\":%lld, \n \"objects\": [ \n", frame_id); |
|
} |
|
|
|
int i, j; |
|
int class_id = -1; |
|
for (i = 0; i < nboxes; ++i) { |
|
for (j = 0; j < classes; ++j) { |
|
int show = strncmp(names[j], "dont_show", 9); |
|
if (dets[i].prob[j] > thresh && show) |
|
{ |
|
if (class_id != -1) strcat(send_buf, ", \n"); |
|
class_id = j; |
|
char *buf = (char *)calloc(2048, sizeof(char)); |
|
//sprintf(buf, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f}", |
|
// image_id, j, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h, dets[i].prob[j]); |
|
|
|
sprintf(buf, " {\"class_id\":%d, \"name\":\"%s\", \"relative_coordinates\":{\"center_x\":%f, \"center_y\":%f, \"width\":%f, \"height\":%f}, \"confidence\":%f}", |
|
j, names[j], dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h, dets[i].prob[j]); |
|
|
|
int send_buf_len = strlen(send_buf); |
|
int buf_len = strlen(buf); |
|
int total_len = send_buf_len + buf_len + 100; |
|
send_buf = (char *)realloc(send_buf, total_len * sizeof(char)); |
|
if (!send_buf) return 0;// exit(-1); |
|
strcat(send_buf, buf); |
|
free(buf); |
|
} |
|
} |
|
} |
|
//strcat(send_buf, "\n ] \n}, \n"); |
|
strcat(send_buf, "\n ] \n}"); |
|
return send_buf; |
|
} |
|
|
|
|
|
float *network_predict_image(network *net, image im) |
|
{ |
|
//image imr = letterbox_image(im, net->w, net->h); |
|
float *p; |
|
if(net->batch != 1) set_batch_network(net, 1); |
|
if (im.w == net->w && im.h == net->h) { |
|
// Input image is the same size as our net, predict on that image |
|
p = network_predict(*net, im.data); |
|
} |
|
else { |
|
// Need to resize image to the desired size for the net |
|
image imr = resize_image(im, net->w, net->h); |
|
p = network_predict(*net, imr.data); |
|
free_image(imr); |
|
} |
|
return p; |
|
} |
|
|
|
float *network_predict_image_letterbox(network *net, image im) |
|
{ |
|
//image imr = letterbox_image(im, net->w, net->h); |
|
float *p; |
|
if (net->batch != 1) set_batch_network(net, 1); |
|
if (im.w == net->w && im.h == net->h) { |
|
// Input image is the same size as our net, predict on that image |
|
p = network_predict(*net, im.data); |
|
} |
|
else { |
|
// Need to resize image to the desired size for the net |
|
image imr = letterbox_image(im, net->w, net->h); |
|
p = network_predict(*net, imr.data); |
|
free_image(imr); |
|
} |
|
return p; |
|
} |
|
|
|
int network_width(network *net) { return net->w; } |
|
int network_height(network *net) { return net->h; } |
|
|
|
matrix network_predict_data_multi(network net, data test, int n) |
|
{ |
|
int i,j,b,m; |
|
int k = get_network_output_size(net); |
|
matrix pred = make_matrix(test.X.rows, k); |
|
float* X = (float*)calloc(net.batch * test.X.rows, sizeof(float)); |
|
for(i = 0; i < test.X.rows; i += net.batch){ |
|
for(b = 0; b < net.batch; ++b){ |
|
if(i+b == test.X.rows) break; |
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
|
} |
|
for(m = 0; m < n; ++m){ |
|
float *out = network_predict(net, X); |
|
for(b = 0; b < net.batch; ++b){ |
|
if(i+b == test.X.rows) break; |
|
for(j = 0; j < k; ++j){ |
|
pred.vals[i+b][j] += out[j+b*k]/n; |
|
} |
|
} |
|
} |
|
} |
|
free(X); |
|
return pred; |
|
} |
|
|
|
matrix network_predict_data(network net, data test) |
|
{ |
|
int i,j,b; |
|
int k = get_network_output_size(net); |
|
matrix pred = make_matrix(test.X.rows, k); |
|
float* X = (float*)calloc(net.batch * test.X.cols, sizeof(float)); |
|
for(i = 0; i < test.X.rows; i += net.batch){ |
|
for(b = 0; b < net.batch; ++b){ |
|
if(i+b == test.X.rows) break; |
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
|
} |
|
float *out = network_predict(net, X); |
|
for(b = 0; b < net.batch; ++b){ |
|
if(i+b == test.X.rows) break; |
|
for(j = 0; j < k; ++j){ |
|
pred.vals[i+b][j] = out[j+b*k]; |
|
} |
|
} |
|
} |
|
free(X); |
|
return pred; |
|
} |
|
|
|
void print_network(network net) |
|
{ |
|
int i,j; |
|
for(i = 0; i < net.n; ++i){ |
|
layer l = net.layers[i]; |
|
float *output = l.output; |
|
int n = l.outputs; |
|
float mean = mean_array(output, n); |
|
float vari = variance_array(output, n); |
|
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); |
|
if(n > 100) n = 100; |
|
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); |
|
if(n == 100)fprintf(stderr,".....\n"); |
|
fprintf(stderr, "\n"); |
|
} |
|
} |
|
|
|
void compare_networks(network n1, network n2, data test) |
|
{ |
|
matrix g1 = network_predict_data(n1, test); |
|
matrix g2 = network_predict_data(n2, test); |
|
int i; |
|
int a,b,c,d; |
|
a = b = c = d = 0; |
|
for(i = 0; i < g1.rows; ++i){ |
|
int truth = max_index(test.y.vals[i], test.y.cols); |
|
int p1 = max_index(g1.vals[i], g1.cols); |
|
int p2 = max_index(g2.vals[i], g2.cols); |
|
if(p1 == truth){ |
|
if(p2 == truth) ++d; |
|
else ++c; |
|
}else{ |
|
if(p2 == truth) ++b; |
|
else ++a; |
|
} |
|
} |
|
printf("%5d %5d\n%5d %5d\n", a, b, c, d); |
|
float num = pow((abs(b - c) - 1.), 2.); |
|
float den = b + c; |
|
printf("%f\n", num/den); |
|
} |
|
|
|
float network_accuracy(network net, data d) |
|
{ |
|
matrix guess = network_predict_data(net, d); |
|
float acc = matrix_topk_accuracy(d.y, guess,1); |
|
free_matrix(guess); |
|
return acc; |
|
} |
|
|
|
float *network_accuracies(network net, data d, int n) |
|
{ |
|
static float acc[2]; |
|
matrix guess = network_predict_data(net, d); |
|
acc[0] = matrix_topk_accuracy(d.y, guess, 1); |
|
acc[1] = matrix_topk_accuracy(d.y, guess, n); |
|
free_matrix(guess); |
|
return acc; |
|
} |
|
|
|
float network_accuracy_multi(network net, data d, int n) |
|
{ |
|
matrix guess = network_predict_data_multi(net, d, n); |
|
float acc = matrix_topk_accuracy(d.y, guess,1); |
|
free_matrix(guess); |
|
return acc; |
|
} |
|
|
|
void free_network(network net) |
|
{ |
|
int i; |
|
for (i = 0; i < net.n; ++i) { |
|
free_layer(net.layers[i]); |
|
} |
|
free(net.layers); |
|
|
|
free(net.seq_scales); |
|
free(net.scales); |
|
free(net.steps); |
|
free(net.seen); |
|
|
|
#ifdef GPU |
|
if (gpu_index >= 0) cuda_free(net.workspace); |
|
else free(net.workspace); |
|
if (net.input_state_gpu) cuda_free(net.input_state_gpu); |
|
if (net.input_pinned_cpu) { // CPU |
|
if (net.input_pinned_cpu_flag) cudaFreeHost(net.input_pinned_cpu); |
|
else free(net.input_pinned_cpu); |
|
} |
|
if (*net.input_gpu) cuda_free(*net.input_gpu); |
|
if (*net.truth_gpu) cuda_free(*net.truth_gpu); |
|
if (net.input_gpu) free(net.input_gpu); |
|
if (net.truth_gpu) free(net.truth_gpu); |
|
|
|
if (*net.input16_gpu) cuda_free(*net.input16_gpu); |
|
if (*net.output16_gpu) cuda_free(*net.output16_gpu); |
|
if (net.input16_gpu) free(net.input16_gpu); |
|
if (net.output16_gpu) free(net.output16_gpu); |
|
if (net.max_input16_size) free(net.max_input16_size); |
|
if (net.max_output16_size) free(net.max_output16_size); |
|
#else |
|
free(net.workspace); |
|
#endif |
|
} |
|
|
|
|
|
void fuse_conv_batchnorm(network net) |
|
{ |
|
int j; |
|
for (j = 0; j < net.n; ++j) { |
|
layer *l = &net.layers[j]; |
|
|
|
if (l->type == CONVOLUTIONAL) { |
|
//printf(" Merges Convolutional-%d and batch_norm \n", j); |
|
|
|
if (l->share_layer != NULL) { |
|
l->batch_normalize = 0; |
|
} |
|
|
|
if (l->batch_normalize) { |
|
int f; |
|
for (f = 0; f < l->n; ++f) |
|
{ |
|
//l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f); |
|
l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f] + .000001)); |
|
|
|
const size_t filter_size = l->size*l->size*l->c / l->groups; |
|
int i; |
|
for (i = 0; i < filter_size; ++i) { |
|
int w_index = f*filter_size + i; |
|
|
|
//l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f); |
|
l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f] + .000001)); |
|
} |
|
} |
|
|
|
free_convolutional_batchnorm(l); |
|
l->batch_normalize = 0; |
|
#ifdef GPU |
|
if (gpu_index >= 0) { |
|
push_convolutional_layer(*l); |
|
} |
|
#endif |
|
} |
|
} |
|
else { |
|
//printf(" Fusion skip layer type: %d \n", l->type); |
|
} |
|
} |
|
} |
|
|
|
void forward_blank_layer(layer l, network_state state) {} |
|
|
|
void calculate_binary_weights(network net) |
|
{ |
|
int j; |
|
for (j = 0; j < net.n; ++j) { |
|
layer *l = &net.layers[j]; |
|
|
|
if (l->type == CONVOLUTIONAL) { |
|
//printf(" Merges Convolutional-%d and batch_norm \n", j); |
|
|
|
if (l->xnor) { |
|
//printf("\n %d \n", j); |
|
//l->lda_align = 256; // 256bit for AVX2 // set in make_convolutional_layer() |
|
//if (l->size*l->size*l->c >= 2048) l->lda_align = 512; |
|
|
|
binary_align_weights(l); |
|
|
|
if (net.layers[j].use_bin_output) { |
|
l->activation = LINEAR; |
|
} |
|
|
|
#ifdef GPU |
|
// fuse conv_xnor + shortcut -> conv_xnor |
|
if ((j + 1) < net.n && net.layers[j].type == CONVOLUTIONAL) { |
|
layer *sc = &net.layers[j + 1]; |
|
if (sc->type == SHORTCUT && sc->w == sc->out_w && sc->h == sc->out_h && sc->c == sc->out_c) |
|
{ |
|
l->bin_conv_shortcut_in_gpu = net.layers[net.layers[j + 1].index].output_gpu; |
|
l->bin_conv_shortcut_out_gpu = net.layers[j + 1].output_gpu; |
|
|
|
net.layers[j + 1].type = BLANK; |
|
net.layers[j + 1].forward_gpu = forward_blank_layer; |
|
} |
|
} |
|
#endif // GPU |
|
} |
|
} |
|
} |
|
//printf("\n calculate_binary_weights Done! \n"); |
|
|
|
} |
|
|
|
void copy_cudnn_descriptors(layer src, layer *dst) |
|
{ |
|
#ifdef CUDNN |
|
dst->normTensorDesc = src.normTensorDesc; |
|
dst->normDstTensorDesc = src.normDstTensorDesc; |
|
dst->normDstTensorDescF16 = src.normDstTensorDescF16; |
|
|
|
dst->srcTensorDesc = src.srcTensorDesc; |
|
dst->dstTensorDesc = src.dstTensorDesc; |
|
|
|
dst->srcTensorDesc16 = src.srcTensorDesc16; |
|
dst->dstTensorDesc16 = src.dstTensorDesc16; |
|
#endif // CUDNN |
|
} |
|
|
|
void copy_weights_net(network net_train, network *net_map) |
|
{ |
|
int k; |
|
for (k = 0; k < net_train.n; ++k) { |
|
layer *l = &(net_train.layers[k]); |
|
layer tmp_layer; |
|
copy_cudnn_descriptors(net_map->layers[k], &tmp_layer); |
|
net_map->layers[k] = net_train.layers[k]; |
|
copy_cudnn_descriptors(tmp_layer, &net_map->layers[k]); |
|
|
|
if (l->type == CRNN) { |
|
layer tmp_input_layer, tmp_self_layer, tmp_output_layer; |
|
copy_cudnn_descriptors(*net_map->layers[k].input_layer, &tmp_input_layer); |
|
copy_cudnn_descriptors(*net_map->layers[k].self_layer, &tmp_self_layer); |
|
copy_cudnn_descriptors(*net_map->layers[k].output_layer, &tmp_output_layer); |
|
net_map->layers[k].input_layer = net_train.layers[k].input_layer; |
|
net_map->layers[k].self_layer = net_train.layers[k].self_layer; |
|
net_map->layers[k].output_layer = net_train.layers[k].output_layer; |
|
//net_map->layers[k].output_gpu = net_map->layers[k].output_layer->output_gpu; // already copied out of if() |
|
|
|
copy_cudnn_descriptors(tmp_input_layer, net_map->layers[k].input_layer); |
|
copy_cudnn_descriptors(tmp_self_layer, net_map->layers[k].self_layer); |
|
copy_cudnn_descriptors(tmp_output_layer, net_map->layers[k].output_layer); |
|
} |
|
else if(l->input_layer) // for AntiAliasing |
|
{ |
|
layer tmp_input_layer; |
|
copy_cudnn_descriptors(*net_map->layers[k].input_layer, &tmp_input_layer); |
|
net_map->layers[k].input_layer = net_train.layers[k].input_layer; |
|
copy_cudnn_descriptors(tmp_input_layer, net_map->layers[k].input_layer); |
|
} |
|
net_map->layers[k].batch = 1; |
|
net_map->layers[k].steps = 1; |
|
} |
|
} |
|
|
|
|
|
// combine Training and Validation networks |
|
network combine_train_valid_networks(network net_train, network net_map) |
|
{ |
|
network net_combined = make_network(net_train.n); |
|
layer *old_layers = net_combined.layers; |
|
net_combined = net_train; |
|
net_combined.layers = old_layers; |
|
net_combined.batch = 1; |
|
|
|
int k; |
|
for (k = 0; k < net_train.n; ++k) { |
|
layer *l = &(net_train.layers[k]); |
|
net_combined.layers[k] = net_train.layers[k]; |
|
net_combined.layers[k].batch = 1; |
|
|
|
if (l->type == CONVOLUTIONAL) { |
|
#ifdef CUDNN |
|
net_combined.layers[k].normTensorDesc = net_map.layers[k].normTensorDesc; |
|
net_combined.layers[k].normDstTensorDesc = net_map.layers[k].normDstTensorDesc; |
|
net_combined.layers[k].normDstTensorDescF16 = net_map.layers[k].normDstTensorDescF16; |
|
|
|
net_combined.layers[k].srcTensorDesc = net_map.layers[k].srcTensorDesc; |
|
net_combined.layers[k].dstTensorDesc = net_map.layers[k].dstTensorDesc; |
|
|
|
net_combined.layers[k].srcTensorDesc16 = net_map.layers[k].srcTensorDesc16; |
|
net_combined.layers[k].dstTensorDesc16 = net_map.layers[k].dstTensorDesc16; |
|
#endif // CUDNN |
|
} |
|
} |
|
return net_combined; |
|
} |
|
|
|
void free_network_recurrent_state(network net) |
|
{ |
|
int k; |
|
for (k = 0; k < net.n; ++k) { |
|
if (net.layers[k].type == CONV_LSTM) free_state_conv_lstm(net.layers[k]); |
|
if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); |
|
} |
|
} |
|
|
|
void randomize_network_recurrent_state(network net) |
|
{ |
|
int k; |
|
for (k = 0; k < net.n; ++k) { |
|
if (net.layers[k].type == CONV_LSTM) randomize_state_conv_lstm(net.layers[k]); |
|
if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); |
|
} |
|
} |
|
|
|
|
|
void remember_network_recurrent_state(network net) |
|
{ |
|
int k; |
|
for (k = 0; k < net.n; ++k) { |
|
if (net.layers[k].type == CONV_LSTM) remember_state_conv_lstm(net.layers[k]); |
|
//if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); |
|
} |
|
} |
|
|
|
void restore_network_recurrent_state(network net) |
|
{ |
|
int k; |
|
for (k = 0; k < net.n; ++k) { |
|
if (net.layers[k].type == CONV_LSTM) restore_state_conv_lstm(net.layers[k]); |
|
if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); |
|
} |
|
} |