You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

768 lines
20 KiB

#include "image.h"
#include "utils.h"
#include <stdio.h>
int windows = 0;
image image_distance(image a, image b)
{
int i,j;
image dist = make_image(a.h, a.w, 1);
for(i = 0; i < a.c; ++i){
for(j = 0; j < a.h*a.w; ++j){
dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2);
}
}
for(j = 0; j < a.h*a.w; ++j){
dist.data[j] = sqrt(dist.data[j]);
}
return dist;
}
void subtract_image(image a, image b)
{
int i;
for(i = 0; i < a.h*a.w*a.c; ++i) a.data[i] -= b.data[i];
}
void embed_image(image source, image dest, int h, int w)
{
int i,j,k;
for(k = 0; k < source.c; ++k){
for(i = 0; i < source.h; ++i){
for(j = 0; j < source.w; ++j){
float val = get_pixel(source, i,j,k);
set_pixel(dest, h+i, w+j, k, val);
}
}
}
}
image collapse_image_layers(image source, int border)
{
int h = source.h;
h = (h+border)*source.c - border;
image dest = make_image(h, source.w, 1);
int i;
for(i = 0; i < source.c; ++i){
image layer = get_image_layer(source, i);
int h_offset = i*(source.h+border);
embed_image(layer, dest, h_offset, 0);
free_image(layer);
}
return dest;
}
void z_normalize_image(image p)
{
normalize_array(p.data, p.h*p.w*p.c);
}
void normalize_image(image p)
{
float *min = calloc(p.c, sizeof(float));
float *max = calloc(p.c, sizeof(float));
int i,j;
for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w];
for(j = 0; j < p.c; ++j){
for(i = 0; i < p.h*p.w; ++i){
float v = p.data[i+j*p.h*p.w];
if(v < min[j]) min[j] = v;
if(v > max[j]) max[j] = v;
}
}
for(i = 0; i < p.c; ++i){
if(max[i] - min[i] < .000000001){
min[i] = 0;
max[i] = 1;
}
}
for(j = 0; j < p.c; ++j){
for(i = 0; i < p.w*p.h; ++i){
p.data[i+j*p.h*p.w] = (p.data[i+j*p.h*p.w] - min[j])/(max[j]-min[j]);
}
}
free(min);
free(max);
}
float avg_image_layer(image m, int l)
{
int i;
float sum = 0;
for(i = 0; i < m.h*m.w; ++i){
sum += m.data[l*m.h*m.w + i];
}
return sum/(m.h*m.w);
}
void threshold_image(image p, float t)
{
int i;
for(i = 0; i < p.w*p.h*p.c; ++i){
if(p.data[i] < t) p.data[i] = 0;
}
}
image copy_image(image p)
{
image copy = p;
copy.data = calloc(p.h*p.w*p.c, sizeof(float));
memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(float));
return copy;
}
void show_image(image p, char *name)
{
int i,j,k;
image copy = copy_image(p);
normalize_image(copy);
char buff[256];
//sprintf(buff, "%s (%d)", name, windows);
sprintf(buff, "%s", name);
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
int step = disp->widthStep;
cvNamedWindow(buff, CV_WINDOW_AUTOSIZE);
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10));
++windows;
for(i = 0; i < p.h; ++i){
for(j = 0; j < p.w; ++j){
for(k= 0; k < p.c; ++k){
disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255);
}
}
}
free_image(copy);
if(disp->height < 500 || disp->width < 500 || disp->height > 1000){
int w = 500;
int h = w*p.h/p.w;
if(h > 1000){
h = 1000;
w = h*p.w/p.h;
}
IplImage *buffer = disp;
disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels);
cvResize(buffer, disp, CV_INTER_NN);
cvReleaseImage(&buffer);
}
cvShowImage(buff, disp);
cvReleaseImage(&disp);
}
void save_image(image p, char *name)
{
int i,j,k;
image copy = copy_image(p);
normalize_image(copy);
char buff[256];
//sprintf(buff, "%s (%d)", name, windows);
sprintf(buff, "%s.png", name);
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
int step = disp->widthStep;
for(i = 0; i < p.h; ++i){
for(j = 0; j < p.w; ++j){
for(k= 0; k < p.c; ++k){
disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255);
}
}
}
free_image(copy);
cvSaveImage(buff, disp,0);
cvReleaseImage(&disp);
}
void show_image_layers(image p, char *name)
{
int i;
char buff[256];
for(i = 0; i < p.c; ++i){
sprintf(buff, "%s - Layer %d", name, i);
image layer = get_image_layer(p, i);
show_image(layer, buff);
free_image(layer);
}
}
void show_image_collapsed(image p, char *name)
{
image c = collapse_image_layers(p, 1);
show_image(c, name);
free_image(c);
}
image make_empty_image(int h, int w, int c)
{
image out;
out.data = 0;
out.h = h;
out.w = w;
out.c = c;
return out;
}
image make_image(int h, int w, int c)
{
image out = make_empty_image(h,w,c);
out.data = calloc(h*w*c, sizeof(float));
return out;
}
image float_to_image(int h, int w, int c, float *data)
{
image out = make_empty_image(h,w,c);
out.data = data;
return out;
}
void zero_image(image m)
{
memset(m.data, 0, m.h*m.w*m.c*sizeof(float));
}
void zero_channel(image m, int c)
{
memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(float));
}
void rotate_image(image m)
{
int i,j;
for(j = 0; j < m.c; ++j){
for(i = 0; i < m.h*m.w/2; ++i){
float swap = m.data[j*m.h*m.w + i];
m.data[j*m.h*m.w + i] = m.data[j*m.h*m.w + (m.h*m.w-1 - i)];
m.data[j*m.h*m.w + (m.h*m.w-1 - i)] = swap;
}
}
}
image make_random_image(int h, int w, int c)
{
image out = make_image(h,w,c);
int i;
for(i = 0; i < h*w*c; ++i){
out.data[i] = rand_normal();
//out.data[i] = rand()%3;
}
return out;
}
void add_into_image(image src, image dest, int h, int w)
{
int i,j,k;
for(k = 0; k < src.c; ++k){
for(i = 0; i < src.h; ++i){
for(j = 0; j < src.w; ++j){
add_pixel(dest, h+i, w+j, k, get_pixel(src, i, j, k));
}
}
}
}
void translate_image(image m, float s)
{
int i;
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s;
}
void scale_image(image m, float s)
{
int i;
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s;
}
image make_random_kernel(int size, int c, float scale)
{
int pad;
if((pad=(size%2==0))) ++size;
image out = make_random_image(size,size,c);
scale_image(out, scale);
int i,k;
if(pad){
for(k = 0; k < out.c; ++k){
for(i = 0; i < size; ++i) {
set_pixel(out, i, 0, k, 0);
set_pixel(out, 0, i, k, 0);
}
}
}
return out;
}
// Returns a new image that is a cropped version (rectangular cut-out)
// of the original image.
IplImage* cropImage(const IplImage *img, const CvRect region)
{
IplImage *imageCropped;
CvSize size;
if (img->width <= 0 || img->height <= 0
|| region.width <= 0 || region.height <= 0) {
//cerr << "ERROR in cropImage(): invalid dimensions." << endl;
exit(1);
}
if (img->depth != IPL_DEPTH_8U) {
//cerr << "ERROR in cropImage(): image depth is not 8." << endl;
exit(1);
}
// Set the desired region of interest.
cvSetImageROI((IplImage*)img, region);
// Copy region of interest into a new iplImage and return it.
size.width = region.width;
size.height = region.height;
imageCropped = cvCreateImage(size, IPL_DEPTH_8U, img->nChannels);
cvCopy(img, imageCropped,NULL); // Copy just the region.
return imageCropped;
}
// Creates a new image copy that is of a desired size. The aspect ratio will
// be kept constant if 'keepAspectRatio' is true, by cropping undesired parts
// so that only pixels of the original image are shown, instead of adding
// extra blank space.
// Remember to free the new image later.
IplImage* resizeImage(const IplImage *origImg, int newHeight, int newWidth,
int keepAspectRatio)
{
IplImage *outImg = 0;
int origWidth = 0;
int origHeight = 0;
if (origImg) {
origWidth = origImg->width;
origHeight = origImg->height;
}
if (newWidth <= 0 || newHeight <= 0 || origImg == 0
|| origWidth <= 0 || origHeight <= 0) {
//cerr << "ERROR: Bad desired image size of " << newWidth
// << "x" << newHeight << " in resizeImage().\n";
exit(1);
}
if (keepAspectRatio) {
// Resize the image without changing its aspect ratio,
// by cropping off the edges and enlarging the middle section.
CvRect r;
// input aspect ratio
float origAspect = (origWidth / (float)origHeight);
// output aspect ratio
float newAspect = (newWidth / (float)newHeight);
// crop width to be origHeight * newAspect
if (origAspect > newAspect) {
int tw = (origHeight * newWidth) / newHeight;
r = cvRect((origWidth - tw)/2, 0, tw, origHeight);
}
else { // crop height to be origWidth / newAspect
int th = (origWidth * newHeight) / newWidth;
r = cvRect(0, (origHeight - th)/2, origWidth, th);
}
IplImage *croppedImg = cropImage(origImg, r);
// Call this function again, with the new aspect ratio image.
// Will do a scaled image resize with the correct aspect ratio.
outImg = resizeImage(croppedImg, newHeight, newWidth, 0);
cvReleaseImage( &croppedImg );
}
else {
// Scale the image to the new dimensions,
// even if the aspect ratio will be changed.
outImg = cvCreateImage(cvSize(newWidth, newHeight),
origImg->depth, origImg->nChannels);
if (newWidth > origImg->width && newHeight > origImg->height) {
// Make the image larger
cvResetImageROI((IplImage*)origImg);
// CV_INTER_LINEAR: good at enlarging.
// CV_INTER_CUBIC: good at enlarging.
cvResize(origImg, outImg, CV_INTER_LINEAR);
}
else {
// Make the image smaller
cvResetImageROI((IplImage*)origImg);
// CV_INTER_AREA: good at shrinking (decimation) only.
cvResize(origImg, outImg, CV_INTER_AREA);
}
}
return outImg;
}
image ipl_to_image(IplImage* src)
{
unsigned char *data = (unsigned char *)src->imageData;
int h = src->height;
int w = src->width;
int c = src->nChannels;
int step = src->widthStep;
image out = make_image(h,w,c);
int i, j, k, count=0;;
for(k= 0; k < c; ++k){
for(i = 0; i < h; ++i){
for(j = 0; j < w; ++j){
out.data[count++] = data[i*step + j*c + k];
}
}
}
return out;
}
image load_image(char *filename, int h, int w)
{
IplImage* src = 0;
if( (src = cvLoadImage(filename,-1)) == 0 )
{
printf("Cannot load file image %s\n", filename);
exit(0);
}
if(h && w ){
IplImage *resized = resizeImage(src, h, w, 1);
cvReleaseImage(&src);
src = resized;
}
image out = ipl_to_image(src);
cvReleaseImage(&src);
return out;
}
image get_image_layer(image m, int l)
{
image out = make_image(m.h, m.w, 1);
int i;
for(i = 0; i < m.h*m.w; ++i){
out.data[i] = m.data[i+l*m.h*m.w];
}
return out;
}
image get_sub_image(image m, int h, int w, int dh, int dw)
{
image out = make_image(dh, dw, m.c);
int i,j,k;
for(k = 0; k < out.c; ++k){
for(i = 0; i < dh; ++i){
for(j = 0; j < dw; ++j){
float val = get_pixel(m, h+i, w+j, k);
set_pixel(out, i, j, k, val);
}
}
}
return out;
}
float get_pixel(image m, int x, int y, int c)
{
assert(x < m.h && y < m.w && c < m.c);
return m.data[c*m.h*m.w + x*m.w + y];
}
float get_pixel_extend(image m, int x, int y, int c)
{
if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return 0;
return get_pixel(m, x, y, c);
}
void set_pixel(image m, int x, int y, int c, float val)
{
assert(x < m.h && y < m.w && c < m.c);
m.data[c*m.h*m.w + x*m.w + y] = val;
}
void set_pixel_extend(image m, int x, int y, int c, float val)
{
if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return;
set_pixel(m, x, y, c, val);
}
void add_pixel(image m, int x, int y, int c, float val)
{
assert(x < m.h && y < m.w && c < m.c);
m.data[c*m.h*m.w + x*m.w + y] += val;
}
void add_pixel_extend(image m, int x, int y, int c, float val)
{
if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return;
add_pixel(m, x, y, c, val);
}
void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc, int edge)
{
int x,y,i,j;
int xstart, xend, ystart, yend;
if(edge){
xstart = ystart = 0;
xend = m.h;
yend = m.w;
}else{
xstart = kernel.h/2;
ystart = kernel.w/2;
xend = m.h-kernel.h/2;
yend = m.w - kernel.w/2;
}
for(x = xstart; x < xend; x += stride){
for(y = ystart; y < yend; y += stride){
float sum = 0;
for(i = 0; i < kernel.h; ++i){
for(j = 0; j < kernel.w; ++j){
sum += get_pixel(kernel, i, j, kc)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, mc);
}
}
add_pixel(out, (x-xstart)/stride, (y-ystart)/stride, oc, sum);
}
}
}
float single_convolve(image m, image kernel, int x, int y)
{
float sum = 0;
int i, j, k;
for(i = 0; i < kernel.h; ++i){
for(j = 0; j < kernel.w; ++j){
for(k = 0; k < kernel.c; ++k){
sum += get_pixel(kernel, i, j, k)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k);
}
}
}
return sum;
}
void convolve(image m, image kernel, int stride, int channel, image out, int edge)
{
assert(m.c == kernel.c);
int i;
zero_channel(out, channel);
for(i = 0; i < m.c; ++i){
two_d_convolve(m, i, kernel, i, stride, out, channel, edge);
}
/*
int j;
for(i = 0; i < m.h; i += stride){
for(j = 0; j < m.w; j += stride){
float val = single_convolve(m, kernel, i, j);
set_pixel(out, i/stride, j/stride, channel, val);
}
}
*/
}
void upsample_image(image m, int stride, image out)
{
int i,j,k;
zero_image(out);
for(k = 0; k < m.c; ++k){
for(i = 0; i < m.h; ++i){
for(j = 0; j< m.w; ++j){
float val = get_pixel(m, i, j, k);
set_pixel(out, i*stride, j*stride, k, val);
}
}
}
}
void single_update(image m, image update, int x, int y, float error)
{
int i, j, k;
for(i = 0; i < update.h; ++i){
for(j = 0; j < update.w; ++j){
for(k = 0; k < update.c; ++k){
float val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k);
add_pixel(update, i, j, k, val*error);
}
}
}
}
void kernel_update(image m, image update, int stride, int channel, image out, int edge)
{
assert(m.c == update.c);
zero_image(update);
int i, j, istart, jstart, iend, jend;
if(edge){
istart = jstart = 0;
iend = m.h;
jend = m.w;
}else{
istart = update.h/2;
jstart = update.w/2;
iend = m.h-update.h/2;
jend = m.w - update.w/2;
}
for(i = istart; i < iend; i += stride){
for(j = jstart; j < jend; j += stride){
float error = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel);
single_update(m, update, i, j, error);
}
}
/*
for(i = 0; i < update.h*update.w*update.c; ++i){
update.data[i] /= (m.h/stride)*(m.w/stride);
}
*/
}
void single_back_convolve(image m, image kernel, int x, int y, float val)
{
int i, j, k;
for(i = 0; i < kernel.h; ++i){
for(j = 0; j < kernel.w; ++j){
for(k = 0; k < kernel.c; ++k){
float pval = get_pixel(kernel, i, j, k) * val;
add_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k, pval);
}
}
}
}
void back_convolve(image m, image kernel, int stride, int channel, image out, int edge)
{
assert(m.c == kernel.c);
int i, j, istart, jstart, iend, jend;
if(edge){
istart = jstart = 0;
iend = m.h;
jend = m.w;
}else{
istart = kernel.h/2;
jstart = kernel.w/2;
iend = m.h-kernel.h/2;
jend = m.w - kernel.w/2;
}
for(i = istart; i < iend; i += stride){
for(j = jstart; j < jend; j += stride){
float val = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel);
single_back_convolve(m, kernel, i, j, val);
}
}
}
void print_image(image m)
{
int i;
for(i =0 ; i < m.h*m.w*m.c; ++i) printf("%lf, ", m.data[i]);
printf("\n");
}
image collapse_images_vert(image *ims, int n)
{
int color = 1;
int border = 1;
int h,w,c;
w = ims[0].w;
h = (ims[0].h + border) * n - border;
c = ims[0].c;
if(c != 3 || !color){
w = (w+border)*c - border;
c = 1;
}
image filters = make_image(h,w,c);
int i,j;
for(i = 0; i < n; ++i){
int h_offset = i*(ims[0].h+border);
image copy = copy_image(ims[i]);
//normalize_image(copy);
if(c == 3 && color){
embed_image(copy, filters, h_offset, 0);
}
else{
for(j = 0; j < copy.c; ++j){
int w_offset = j*(ims[0].w+border);
image layer = get_image_layer(copy, j);
embed_image(layer, filters, h_offset, w_offset);
free_image(layer);
}
}
free_image(copy);
}
return filters;
}
image collapse_images_horz(image *ims, int n)
{
int color = 1;
int border = 1;
int h,w,c;
int size = ims[0].h;
h = size;
w = (ims[0].w + border) * n - border;
c = ims[0].c;
if(c != 3 || !color){
h = (h+border)*c - border;
c = 1;
}
image filters = make_image(h,w,c);
int i,j;
for(i = 0; i < n; ++i){
int w_offset = i*(size+border);
image copy = copy_image(ims[i]);
//normalize_image(copy);
if(c == 3 && color){
embed_image(copy, filters, 0, w_offset);
}
else{
for(j = 0; j < copy.c; ++j){
int h_offset = j*(size+border);
image layer = get_image_layer(copy, j);
embed_image(layer, filters, h_offset, w_offset);
free_image(layer);
}
}
free_image(copy);
}
return filters;
}
void show_images(image *ims, int n, char *window)
{
image m = collapse_images_vert(ims, n);
//save_image(m, window);
show_image(m, window);
free_image(m);
}
image grid_images(image **ims, int h, int w)
{
int i;
image *rows = calloc(h, sizeof(image));
for(i = 0; i < h; ++i){
rows[i] = collapse_images_horz(ims[i], w);
}
image out = collapse_images_vert(rows, h);
for(i = 0; i < h; ++i){
free_image(rows[i]);
}
free(rows);
return out;
}
void test_grid()
{
int i,j;
int num = 3;
int topk = 3;
image **vizs = calloc(num, sizeof(image*));
for(i = 0; i < num; ++i){
vizs[i] = calloc(topk, sizeof(image));
for(j = 0; j < topk; ++j) vizs[i][j] = make_image(3,3,3);
}
image grid = grid_images(vizs, num, topk);
save_image(grid, "Test Grid");
free_image(grid);
}
void show_images_grid(image **ims, int h, int w, char *window)
{
image out = grid_images(ims, h, w);
show_image(out, window);
free_image(out);
}
void free_image(image m)
{
free(m.data);
}