mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
768 lines
20 KiB
768 lines
20 KiB
#include "image.h" |
|
#include "utils.h" |
|
#include <stdio.h> |
|
|
|
int windows = 0; |
|
|
|
image image_distance(image a, image b) |
|
{ |
|
int i,j; |
|
image dist = make_image(a.h, a.w, 1); |
|
for(i = 0; i < a.c; ++i){ |
|
for(j = 0; j < a.h*a.w; ++j){ |
|
dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2); |
|
} |
|
} |
|
for(j = 0; j < a.h*a.w; ++j){ |
|
dist.data[j] = sqrt(dist.data[j]); |
|
} |
|
return dist; |
|
} |
|
|
|
void subtract_image(image a, image b) |
|
{ |
|
int i; |
|
for(i = 0; i < a.h*a.w*a.c; ++i) a.data[i] -= b.data[i]; |
|
} |
|
|
|
void embed_image(image source, image dest, int h, int w) |
|
{ |
|
int i,j,k; |
|
for(k = 0; k < source.c; ++k){ |
|
for(i = 0; i < source.h; ++i){ |
|
for(j = 0; j < source.w; ++j){ |
|
float val = get_pixel(source, i,j,k); |
|
set_pixel(dest, h+i, w+j, k, val); |
|
} |
|
} |
|
} |
|
} |
|
|
|
image collapse_image_layers(image source, int border) |
|
{ |
|
int h = source.h; |
|
h = (h+border)*source.c - border; |
|
image dest = make_image(h, source.w, 1); |
|
int i; |
|
for(i = 0; i < source.c; ++i){ |
|
image layer = get_image_layer(source, i); |
|
int h_offset = i*(source.h+border); |
|
embed_image(layer, dest, h_offset, 0); |
|
free_image(layer); |
|
} |
|
return dest; |
|
} |
|
|
|
void z_normalize_image(image p) |
|
{ |
|
normalize_array(p.data, p.h*p.w*p.c); |
|
} |
|
|
|
void normalize_image(image p) |
|
{ |
|
float *min = calloc(p.c, sizeof(float)); |
|
float *max = calloc(p.c, sizeof(float)); |
|
int i,j; |
|
for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w]; |
|
|
|
for(j = 0; j < p.c; ++j){ |
|
for(i = 0; i < p.h*p.w; ++i){ |
|
float v = p.data[i+j*p.h*p.w]; |
|
if(v < min[j]) min[j] = v; |
|
if(v > max[j]) max[j] = v; |
|
} |
|
} |
|
for(i = 0; i < p.c; ++i){ |
|
if(max[i] - min[i] < .000000001){ |
|
min[i] = 0; |
|
max[i] = 1; |
|
} |
|
} |
|
for(j = 0; j < p.c; ++j){ |
|
for(i = 0; i < p.w*p.h; ++i){ |
|
p.data[i+j*p.h*p.w] = (p.data[i+j*p.h*p.w] - min[j])/(max[j]-min[j]); |
|
} |
|
} |
|
free(min); |
|
free(max); |
|
} |
|
|
|
float avg_image_layer(image m, int l) |
|
{ |
|
int i; |
|
float sum = 0; |
|
for(i = 0; i < m.h*m.w; ++i){ |
|
sum += m.data[l*m.h*m.w + i]; |
|
} |
|
return sum/(m.h*m.w); |
|
} |
|
|
|
void threshold_image(image p, float t) |
|
{ |
|
int i; |
|
for(i = 0; i < p.w*p.h*p.c; ++i){ |
|
if(p.data[i] < t) p.data[i] = 0; |
|
} |
|
} |
|
|
|
image copy_image(image p) |
|
{ |
|
image copy = p; |
|
copy.data = calloc(p.h*p.w*p.c, sizeof(float)); |
|
memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(float)); |
|
return copy; |
|
} |
|
|
|
|
|
void show_image(image p, char *name) |
|
{ |
|
int i,j,k; |
|
image copy = copy_image(p); |
|
normalize_image(copy); |
|
|
|
char buff[256]; |
|
//sprintf(buff, "%s (%d)", name, windows); |
|
sprintf(buff, "%s", name); |
|
|
|
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); |
|
int step = disp->widthStep; |
|
cvNamedWindow(buff, CV_WINDOW_AUTOSIZE); |
|
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); |
|
++windows; |
|
for(i = 0; i < p.h; ++i){ |
|
for(j = 0; j < p.w; ++j){ |
|
for(k= 0; k < p.c; ++k){ |
|
disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255); |
|
} |
|
} |
|
} |
|
free_image(copy); |
|
if(disp->height < 500 || disp->width < 500 || disp->height > 1000){ |
|
int w = 500; |
|
int h = w*p.h/p.w; |
|
if(h > 1000){ |
|
h = 1000; |
|
w = h*p.w/p.h; |
|
} |
|
IplImage *buffer = disp; |
|
disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels); |
|
cvResize(buffer, disp, CV_INTER_NN); |
|
cvReleaseImage(&buffer); |
|
} |
|
cvShowImage(buff, disp); |
|
cvReleaseImage(&disp); |
|
} |
|
|
|
void save_image(image p, char *name) |
|
{ |
|
int i,j,k; |
|
image copy = copy_image(p); |
|
normalize_image(copy); |
|
|
|
char buff[256]; |
|
//sprintf(buff, "%s (%d)", name, windows); |
|
sprintf(buff, "%s.png", name); |
|
|
|
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); |
|
int step = disp->widthStep; |
|
for(i = 0; i < p.h; ++i){ |
|
for(j = 0; j < p.w; ++j){ |
|
for(k= 0; k < p.c; ++k){ |
|
disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255); |
|
} |
|
} |
|
} |
|
free_image(copy); |
|
cvSaveImage(buff, disp,0); |
|
cvReleaseImage(&disp); |
|
} |
|
|
|
void show_image_layers(image p, char *name) |
|
{ |
|
int i; |
|
char buff[256]; |
|
for(i = 0; i < p.c; ++i){ |
|
sprintf(buff, "%s - Layer %d", name, i); |
|
image layer = get_image_layer(p, i); |
|
show_image(layer, buff); |
|
free_image(layer); |
|
} |
|
} |
|
|
|
void show_image_collapsed(image p, char *name) |
|
{ |
|
image c = collapse_image_layers(p, 1); |
|
show_image(c, name); |
|
free_image(c); |
|
} |
|
|
|
image make_empty_image(int h, int w, int c) |
|
{ |
|
image out; |
|
out.data = 0; |
|
out.h = h; |
|
out.w = w; |
|
out.c = c; |
|
return out; |
|
} |
|
|
|
image make_image(int h, int w, int c) |
|
{ |
|
image out = make_empty_image(h,w,c); |
|
out.data = calloc(h*w*c, sizeof(float)); |
|
return out; |
|
} |
|
|
|
image float_to_image(int h, int w, int c, float *data) |
|
{ |
|
image out = make_empty_image(h,w,c); |
|
out.data = data; |
|
return out; |
|
} |
|
|
|
void zero_image(image m) |
|
{ |
|
memset(m.data, 0, m.h*m.w*m.c*sizeof(float)); |
|
} |
|
|
|
void zero_channel(image m, int c) |
|
{ |
|
memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(float)); |
|
} |
|
|
|
void rotate_image(image m) |
|
{ |
|
int i,j; |
|
for(j = 0; j < m.c; ++j){ |
|
for(i = 0; i < m.h*m.w/2; ++i){ |
|
float swap = m.data[j*m.h*m.w + i]; |
|
m.data[j*m.h*m.w + i] = m.data[j*m.h*m.w + (m.h*m.w-1 - i)]; |
|
m.data[j*m.h*m.w + (m.h*m.w-1 - i)] = swap; |
|
} |
|
} |
|
} |
|
|
|
image make_random_image(int h, int w, int c) |
|
{ |
|
image out = make_image(h,w,c); |
|
int i; |
|
for(i = 0; i < h*w*c; ++i){ |
|
out.data[i] = rand_normal(); |
|
//out.data[i] = rand()%3; |
|
} |
|
return out; |
|
} |
|
|
|
void add_into_image(image src, image dest, int h, int w) |
|
{ |
|
int i,j,k; |
|
for(k = 0; k < src.c; ++k){ |
|
for(i = 0; i < src.h; ++i){ |
|
for(j = 0; j < src.w; ++j){ |
|
add_pixel(dest, h+i, w+j, k, get_pixel(src, i, j, k)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void translate_image(image m, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s; |
|
} |
|
|
|
void scale_image(image m, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; |
|
} |
|
|
|
image make_random_kernel(int size, int c, float scale) |
|
{ |
|
int pad; |
|
if((pad=(size%2==0))) ++size; |
|
image out = make_random_image(size,size,c); |
|
scale_image(out, scale); |
|
int i,k; |
|
if(pad){ |
|
for(k = 0; k < out.c; ++k){ |
|
for(i = 0; i < size; ++i) { |
|
set_pixel(out, i, 0, k, 0); |
|
set_pixel(out, 0, i, k, 0); |
|
} |
|
} |
|
} |
|
return out; |
|
} |
|
|
|
// Returns a new image that is a cropped version (rectangular cut-out) |
|
// of the original image. |
|
IplImage* cropImage(const IplImage *img, const CvRect region) |
|
{ |
|
IplImage *imageCropped; |
|
CvSize size; |
|
|
|
if (img->width <= 0 || img->height <= 0 |
|
|| region.width <= 0 || region.height <= 0) { |
|
//cerr << "ERROR in cropImage(): invalid dimensions." << endl; |
|
exit(1); |
|
} |
|
|
|
if (img->depth != IPL_DEPTH_8U) { |
|
//cerr << "ERROR in cropImage(): image depth is not 8." << endl; |
|
exit(1); |
|
} |
|
|
|
// Set the desired region of interest. |
|
cvSetImageROI((IplImage*)img, region); |
|
// Copy region of interest into a new iplImage and return it. |
|
size.width = region.width; |
|
size.height = region.height; |
|
imageCropped = cvCreateImage(size, IPL_DEPTH_8U, img->nChannels); |
|
cvCopy(img, imageCropped,NULL); // Copy just the region. |
|
|
|
return imageCropped; |
|
} |
|
|
|
// Creates a new image copy that is of a desired size. The aspect ratio will |
|
// be kept constant if 'keepAspectRatio' is true, by cropping undesired parts |
|
// so that only pixels of the original image are shown, instead of adding |
|
// extra blank space. |
|
// Remember to free the new image later. |
|
IplImage* resizeImage(const IplImage *origImg, int newHeight, int newWidth, |
|
int keepAspectRatio) |
|
{ |
|
IplImage *outImg = 0; |
|
int origWidth = 0; |
|
int origHeight = 0; |
|
if (origImg) { |
|
origWidth = origImg->width; |
|
origHeight = origImg->height; |
|
} |
|
if (newWidth <= 0 || newHeight <= 0 || origImg == 0 |
|
|| origWidth <= 0 || origHeight <= 0) { |
|
//cerr << "ERROR: Bad desired image size of " << newWidth |
|
// << "x" << newHeight << " in resizeImage().\n"; |
|
exit(1); |
|
} |
|
|
|
if (keepAspectRatio) { |
|
// Resize the image without changing its aspect ratio, |
|
// by cropping off the edges and enlarging the middle section. |
|
CvRect r; |
|
// input aspect ratio |
|
float origAspect = (origWidth / (float)origHeight); |
|
// output aspect ratio |
|
float newAspect = (newWidth / (float)newHeight); |
|
// crop width to be origHeight * newAspect |
|
if (origAspect > newAspect) { |
|
int tw = (origHeight * newWidth) / newHeight; |
|
r = cvRect((origWidth - tw)/2, 0, tw, origHeight); |
|
} |
|
else { // crop height to be origWidth / newAspect |
|
int th = (origWidth * newHeight) / newWidth; |
|
r = cvRect(0, (origHeight - th)/2, origWidth, th); |
|
} |
|
IplImage *croppedImg = cropImage(origImg, r); |
|
|
|
// Call this function again, with the new aspect ratio image. |
|
// Will do a scaled image resize with the correct aspect ratio. |
|
outImg = resizeImage(croppedImg, newHeight, newWidth, 0); |
|
cvReleaseImage( &croppedImg ); |
|
|
|
} |
|
else { |
|
|
|
// Scale the image to the new dimensions, |
|
// even if the aspect ratio will be changed. |
|
outImg = cvCreateImage(cvSize(newWidth, newHeight), |
|
origImg->depth, origImg->nChannels); |
|
if (newWidth > origImg->width && newHeight > origImg->height) { |
|
// Make the image larger |
|
cvResetImageROI((IplImage*)origImg); |
|
// CV_INTER_LINEAR: good at enlarging. |
|
// CV_INTER_CUBIC: good at enlarging. |
|
cvResize(origImg, outImg, CV_INTER_LINEAR); |
|
} |
|
else { |
|
// Make the image smaller |
|
cvResetImageROI((IplImage*)origImg); |
|
// CV_INTER_AREA: good at shrinking (decimation) only. |
|
cvResize(origImg, outImg, CV_INTER_AREA); |
|
} |
|
|
|
} |
|
return outImg; |
|
} |
|
|
|
image ipl_to_image(IplImage* src) |
|
{ |
|
unsigned char *data = (unsigned char *)src->imageData; |
|
int h = src->height; |
|
int w = src->width; |
|
int c = src->nChannels; |
|
int step = src->widthStep; |
|
image out = make_image(h,w,c); |
|
int i, j, k, count=0;; |
|
|
|
for(k= 0; k < c; ++k){ |
|
for(i = 0; i < h; ++i){ |
|
for(j = 0; j < w; ++j){ |
|
out.data[count++] = data[i*step + j*c + k]; |
|
} |
|
} |
|
} |
|
return out; |
|
} |
|
|
|
image load_image(char *filename, int h, int w) |
|
{ |
|
IplImage* src = 0; |
|
if( (src = cvLoadImage(filename,-1)) == 0 ) |
|
{ |
|
printf("Cannot load file image %s\n", filename); |
|
exit(0); |
|
} |
|
if(h && w ){ |
|
IplImage *resized = resizeImage(src, h, w, 1); |
|
cvReleaseImage(&src); |
|
src = resized; |
|
} |
|
image out = ipl_to_image(src); |
|
cvReleaseImage(&src); |
|
return out; |
|
} |
|
|
|
image get_image_layer(image m, int l) |
|
{ |
|
image out = make_image(m.h, m.w, 1); |
|
int i; |
|
for(i = 0; i < m.h*m.w; ++i){ |
|
out.data[i] = m.data[i+l*m.h*m.w]; |
|
} |
|
return out; |
|
} |
|
image get_sub_image(image m, int h, int w, int dh, int dw) |
|
{ |
|
image out = make_image(dh, dw, m.c); |
|
int i,j,k; |
|
for(k = 0; k < out.c; ++k){ |
|
for(i = 0; i < dh; ++i){ |
|
for(j = 0; j < dw; ++j){ |
|
float val = get_pixel(m, h+i, w+j, k); |
|
set_pixel(out, i, j, k, val); |
|
} |
|
} |
|
} |
|
return out; |
|
} |
|
|
|
float get_pixel(image m, int x, int y, int c) |
|
{ |
|
assert(x < m.h && y < m.w && c < m.c); |
|
return m.data[c*m.h*m.w + x*m.w + y]; |
|
} |
|
float get_pixel_extend(image m, int x, int y, int c) |
|
{ |
|
if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return 0; |
|
return get_pixel(m, x, y, c); |
|
} |
|
void set_pixel(image m, int x, int y, int c, float val) |
|
{ |
|
assert(x < m.h && y < m.w && c < m.c); |
|
m.data[c*m.h*m.w + x*m.w + y] = val; |
|
} |
|
void set_pixel_extend(image m, int x, int y, int c, float val) |
|
{ |
|
if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; |
|
set_pixel(m, x, y, c, val); |
|
} |
|
|
|
void add_pixel(image m, int x, int y, int c, float val) |
|
{ |
|
assert(x < m.h && y < m.w && c < m.c); |
|
m.data[c*m.h*m.w + x*m.w + y] += val; |
|
} |
|
|
|
void add_pixel_extend(image m, int x, int y, int c, float val) |
|
{ |
|
if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; |
|
add_pixel(m, x, y, c, val); |
|
} |
|
|
|
void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc, int edge) |
|
{ |
|
int x,y,i,j; |
|
int xstart, xend, ystart, yend; |
|
if(edge){ |
|
xstart = ystart = 0; |
|
xend = m.h; |
|
yend = m.w; |
|
}else{ |
|
xstart = kernel.h/2; |
|
ystart = kernel.w/2; |
|
xend = m.h-kernel.h/2; |
|
yend = m.w - kernel.w/2; |
|
} |
|
for(x = xstart; x < xend; x += stride){ |
|
for(y = ystart; y < yend; y += stride){ |
|
float sum = 0; |
|
for(i = 0; i < kernel.h; ++i){ |
|
for(j = 0; j < kernel.w; ++j){ |
|
sum += get_pixel(kernel, i, j, kc)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, mc); |
|
} |
|
} |
|
add_pixel(out, (x-xstart)/stride, (y-ystart)/stride, oc, sum); |
|
} |
|
} |
|
} |
|
|
|
float single_convolve(image m, image kernel, int x, int y) |
|
{ |
|
float sum = 0; |
|
int i, j, k; |
|
for(i = 0; i < kernel.h; ++i){ |
|
for(j = 0; j < kernel.w; ++j){ |
|
for(k = 0; k < kernel.c; ++k){ |
|
sum += get_pixel(kernel, i, j, k)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k); |
|
} |
|
} |
|
} |
|
return sum; |
|
} |
|
|
|
void convolve(image m, image kernel, int stride, int channel, image out, int edge) |
|
{ |
|
assert(m.c == kernel.c); |
|
int i; |
|
zero_channel(out, channel); |
|
for(i = 0; i < m.c; ++i){ |
|
two_d_convolve(m, i, kernel, i, stride, out, channel, edge); |
|
} |
|
/* |
|
int j; |
|
for(i = 0; i < m.h; i += stride){ |
|
for(j = 0; j < m.w; j += stride){ |
|
float val = single_convolve(m, kernel, i, j); |
|
set_pixel(out, i/stride, j/stride, channel, val); |
|
} |
|
} |
|
*/ |
|
} |
|
|
|
void upsample_image(image m, int stride, image out) |
|
{ |
|
int i,j,k; |
|
zero_image(out); |
|
for(k = 0; k < m.c; ++k){ |
|
for(i = 0; i < m.h; ++i){ |
|
for(j = 0; j< m.w; ++j){ |
|
float val = get_pixel(m, i, j, k); |
|
set_pixel(out, i*stride, j*stride, k, val); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void single_update(image m, image update, int x, int y, float error) |
|
{ |
|
int i, j, k; |
|
for(i = 0; i < update.h; ++i){ |
|
for(j = 0; j < update.w; ++j){ |
|
for(k = 0; k < update.c; ++k){ |
|
float val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k); |
|
add_pixel(update, i, j, k, val*error); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void kernel_update(image m, image update, int stride, int channel, image out, int edge) |
|
{ |
|
assert(m.c == update.c); |
|
zero_image(update); |
|
int i, j, istart, jstart, iend, jend; |
|
if(edge){ |
|
istart = jstart = 0; |
|
iend = m.h; |
|
jend = m.w; |
|
}else{ |
|
istart = update.h/2; |
|
jstart = update.w/2; |
|
iend = m.h-update.h/2; |
|
jend = m.w - update.w/2; |
|
} |
|
for(i = istart; i < iend; i += stride){ |
|
for(j = jstart; j < jend; j += stride){ |
|
float error = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
|
single_update(m, update, i, j, error); |
|
} |
|
} |
|
/* |
|
for(i = 0; i < update.h*update.w*update.c; ++i){ |
|
update.data[i] /= (m.h/stride)*(m.w/stride); |
|
} |
|
*/ |
|
} |
|
|
|
void single_back_convolve(image m, image kernel, int x, int y, float val) |
|
{ |
|
int i, j, k; |
|
for(i = 0; i < kernel.h; ++i){ |
|
for(j = 0; j < kernel.w; ++j){ |
|
for(k = 0; k < kernel.c; ++k){ |
|
float pval = get_pixel(kernel, i, j, k) * val; |
|
add_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k, pval); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void back_convolve(image m, image kernel, int stride, int channel, image out, int edge) |
|
{ |
|
assert(m.c == kernel.c); |
|
int i, j, istart, jstart, iend, jend; |
|
if(edge){ |
|
istart = jstart = 0; |
|
iend = m.h; |
|
jend = m.w; |
|
}else{ |
|
istart = kernel.h/2; |
|
jstart = kernel.w/2; |
|
iend = m.h-kernel.h/2; |
|
jend = m.w - kernel.w/2; |
|
} |
|
for(i = istart; i < iend; i += stride){ |
|
for(j = jstart; j < jend; j += stride){ |
|
float val = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
|
single_back_convolve(m, kernel, i, j, val); |
|
} |
|
} |
|
} |
|
|
|
void print_image(image m) |
|
{ |
|
int i; |
|
for(i =0 ; i < m.h*m.w*m.c; ++i) printf("%lf, ", m.data[i]); |
|
printf("\n"); |
|
} |
|
image collapse_images_vert(image *ims, int n) |
|
{ |
|
int color = 1; |
|
int border = 1; |
|
int h,w,c; |
|
w = ims[0].w; |
|
h = (ims[0].h + border) * n - border; |
|
c = ims[0].c; |
|
if(c != 3 || !color){ |
|
w = (w+border)*c - border; |
|
c = 1; |
|
} |
|
|
|
image filters = make_image(h,w,c); |
|
int i,j; |
|
for(i = 0; i < n; ++i){ |
|
int h_offset = i*(ims[0].h+border); |
|
image copy = copy_image(ims[i]); |
|
//normalize_image(copy); |
|
if(c == 3 && color){ |
|
embed_image(copy, filters, h_offset, 0); |
|
} |
|
else{ |
|
for(j = 0; j < copy.c; ++j){ |
|
int w_offset = j*(ims[0].w+border); |
|
image layer = get_image_layer(copy, j); |
|
embed_image(layer, filters, h_offset, w_offset); |
|
free_image(layer); |
|
} |
|
} |
|
free_image(copy); |
|
} |
|
return filters; |
|
} |
|
|
|
image collapse_images_horz(image *ims, int n) |
|
{ |
|
int color = 1; |
|
int border = 1; |
|
int h,w,c; |
|
int size = ims[0].h; |
|
h = size; |
|
w = (ims[0].w + border) * n - border; |
|
c = ims[0].c; |
|
if(c != 3 || !color){ |
|
h = (h+border)*c - border; |
|
c = 1; |
|
} |
|
|
|
image filters = make_image(h,w,c); |
|
int i,j; |
|
for(i = 0; i < n; ++i){ |
|
int w_offset = i*(size+border); |
|
image copy = copy_image(ims[i]); |
|
//normalize_image(copy); |
|
if(c == 3 && color){ |
|
embed_image(copy, filters, 0, w_offset); |
|
} |
|
else{ |
|
for(j = 0; j < copy.c; ++j){ |
|
int h_offset = j*(size+border); |
|
image layer = get_image_layer(copy, j); |
|
embed_image(layer, filters, h_offset, w_offset); |
|
free_image(layer); |
|
} |
|
} |
|
free_image(copy); |
|
} |
|
return filters; |
|
} |
|
|
|
void show_images(image *ims, int n, char *window) |
|
{ |
|
image m = collapse_images_vert(ims, n); |
|
//save_image(m, window); |
|
show_image(m, window); |
|
free_image(m); |
|
} |
|
|
|
image grid_images(image **ims, int h, int w) |
|
{ |
|
int i; |
|
image *rows = calloc(h, sizeof(image)); |
|
for(i = 0; i < h; ++i){ |
|
rows[i] = collapse_images_horz(ims[i], w); |
|
} |
|
image out = collapse_images_vert(rows, h); |
|
for(i = 0; i < h; ++i){ |
|
free_image(rows[i]); |
|
} |
|
free(rows); |
|
return out; |
|
} |
|
|
|
void test_grid() |
|
{ |
|
int i,j; |
|
int num = 3; |
|
int topk = 3; |
|
image **vizs = calloc(num, sizeof(image*)); |
|
for(i = 0; i < num; ++i){ |
|
vizs[i] = calloc(topk, sizeof(image)); |
|
for(j = 0; j < topk; ++j) vizs[i][j] = make_image(3,3,3); |
|
} |
|
image grid = grid_images(vizs, num, topk); |
|
save_image(grid, "Test Grid"); |
|
free_image(grid); |
|
} |
|
|
|
void show_images_grid(image **ims, int h, int w, char *window) |
|
{ |
|
image out = grid_images(ims, h, w); |
|
show_image(out, window); |
|
free_image(out); |
|
} |
|
|
|
void free_image(image m) |
|
{ |
|
free(m.data); |
|
}
|
|
|