mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
4.9 KiB
150 lines
4.9 KiB
#include "scale_channels_layer.h" |
|
#include "utils.h" |
|
#include "dark_cuda.h" |
|
#include "blas.h" |
|
#include <stdio.h> |
|
#include <assert.h> |
|
|
|
layer make_scale_channels_layer(int batch, int index, int w, int h, int c, int w2, int h2, int c2, int scale_wh) |
|
{ |
|
fprintf(stderr,"scale Layer: %d\n", index); |
|
layer l = { (LAYER_TYPE)0 }; |
|
l.type = SCALE_CHANNELS; |
|
l.batch = batch; |
|
l.scale_wh = scale_wh; |
|
l.w = w; |
|
l.h = h; |
|
l.c = c; |
|
if (!l.scale_wh) assert(w == 1 && h == 1); |
|
else assert(c == 1); |
|
|
|
l.out_w = w2; |
|
l.out_h = h2; |
|
l.out_c = c2; |
|
if (!l.scale_wh) assert(l.out_c == l.c); |
|
else assert(l.out_w == l.w && l.out_h == l.h); |
|
|
|
l.outputs = l.out_w*l.out_h*l.out_c; |
|
l.inputs = l.outputs; |
|
l.index = index; |
|
|
|
l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float)); |
|
l.output = (float*)xcalloc(l.outputs * batch, sizeof(float)); |
|
|
|
l.forward = forward_scale_channels_layer; |
|
l.backward = backward_scale_channels_layer; |
|
#ifdef GPU |
|
l.forward_gpu = forward_scale_channels_layer_gpu; |
|
l.backward_gpu = backward_scale_channels_layer_gpu; |
|
|
|
l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch); |
|
l.output_gpu = cuda_make_array(l.output, l.outputs*batch); |
|
#endif |
|
return l; |
|
} |
|
|
|
void resize_scale_channels_layer(layer *l, network *net) |
|
{ |
|
layer first = net->layers[l->index]; |
|
l->out_w = first.out_w; |
|
l->out_h = first.out_h; |
|
l->outputs = l->out_w*l->out_h*l->out_c; |
|
l->inputs = l->outputs; |
|
l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float)); |
|
l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float)); |
|
|
|
#ifdef GPU |
|
cuda_free(l->output_gpu); |
|
cuda_free(l->delta_gpu); |
|
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); |
|
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); |
|
#endif |
|
|
|
} |
|
|
|
void forward_scale_channels_layer(const layer l, network_state state) |
|
{ |
|
int size = l.batch * l.out_c * l.out_w * l.out_h; |
|
int channel_size = l.out_w * l.out_h; |
|
int batch_size = l.out_c * l.out_w * l.out_h; |
|
float *from_output = state.net.layers[l.index].output; |
|
|
|
if (l.scale_wh) { |
|
int i; |
|
#pragma omp parallel for |
|
for (i = 0; i < size; ++i) { |
|
int input_index = i % channel_size + (i / batch_size)*channel_size; |
|
|
|
l.output[i] = state.input[input_index] * from_output[i]; |
|
} |
|
} |
|
else { |
|
int i; |
|
#pragma omp parallel for |
|
for (i = 0; i < size; ++i) { |
|
l.output[i] = state.input[i / channel_size] * from_output[i]; |
|
} |
|
} |
|
|
|
activate_array(l.output, l.outputs*l.batch, l.activation); |
|
} |
|
|
|
void backward_scale_channels_layer(const layer l, network_state state) |
|
{ |
|
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); |
|
//axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1); |
|
//scale_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta); |
|
|
|
int size = l.batch * l.out_c * l.out_w * l.out_h; |
|
int channel_size = l.out_w * l.out_h; |
|
int batch_size = l.out_c * l.out_w * l.out_h; |
|
float *from_output = state.net.layers[l.index].output; |
|
float *from_delta = state.net.layers[l.index].delta; |
|
|
|
if (l.scale_wh) { |
|
int i; |
|
#pragma omp parallel for |
|
for (i = 0; i < size; ++i) { |
|
int input_index = i % channel_size + (i / batch_size)*channel_size; |
|
|
|
state.delta[input_index] += l.delta[i] * from_output[i];// / l.out_c; // l.delta * from (should be divided by l.out_c?) |
|
|
|
from_delta[i] += state.input[input_index] * l.delta[i]; // input * l.delta |
|
} |
|
} |
|
else { |
|
int i; |
|
#pragma omp parallel for |
|
for (i = 0; i < size; ++i) { |
|
state.delta[i / channel_size] += l.delta[i] * from_output[i];// / channel_size; // l.delta * from (should be divided by channel_size?) |
|
|
|
from_delta[i] += state.input[i / channel_size] * l.delta[i]; // input * l.delta |
|
} |
|
} |
|
} |
|
|
|
#ifdef GPU |
|
void forward_scale_channels_layer_gpu(const layer l, network_state state) |
|
{ |
|
int size = l.batch * l.out_c * l.out_w * l.out_h; |
|
int channel_size = l.out_w * l.out_h; |
|
int batch_size = l.out_c * l.out_w * l.out_h; |
|
|
|
scale_channels_gpu(state.net.layers[l.index].output_gpu, size, channel_size, batch_size, l.scale_wh, state.input, l.output_gpu); |
|
|
|
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
|
} |
|
|
|
void backward_scale_channels_layer_gpu(const layer l, network_state state) |
|
{ |
|
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
|
|
|
int size = l.batch * l.out_c * l.out_w * l.out_h; |
|
int channel_size = l.out_w * l.out_h; |
|
int batch_size = l.out_c * l.out_w * l.out_h; |
|
float *from_output = state.net.layers[l.index].output_gpu; |
|
float *from_delta = state.net.layers[l.index].delta_gpu; |
|
|
|
backward_scale_channels_gpu(l.delta_gpu, size, channel_size, batch_size, l.scale_wh, state.input, from_delta, from_output, state.delta); |
|
} |
|
#endif
|
|
|