You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

499 lines
16 KiB

#ifdef __cplusplus
extern "C" {
#endif
int gpu_index = 0;
#ifdef __cplusplus
}
#endif // __cplusplus
#ifdef GPU
#include "dark_cuda.h"
#include "utils.h"
#include "blas.h"
#include "assert.h"
#include <stdlib.h>
#include <time.h>
#include <cuda.h>
#include <stdio.h>
#pragma comment(lib, "cuda.lib")
#ifdef CUDNN
#ifndef USE_CMAKE_LIBS
#pragma comment(lib, "cudnn.lib")
#endif // USE_CMAKE_LIBS
#endif // CUDNN
#if defined(CUDNN_HALF) && !defined(CUDNN)
#error "If you set CUDNN_HALF=1 then you must set CUDNN=1"
#endif
void cuda_set_device(int n)
{
gpu_index = n;
cudaError_t status = cudaSetDevice(n);
if(status != cudaSuccess) CHECK_CUDA(status);
}
int cuda_get_device()
{
int n = 0;
cudaError_t status = cudaGetDevice(&n);
CHECK_CUDA(status);
return n;
}
void *cuda_get_context()
{
CUcontext pctx;
CUresult status = cuCtxGetCurrent(&pctx);
if(status != CUDA_SUCCESS) fprintf(stderr, " Error: cuCtxGetCurrent() is failed \n");
return (void *)pctx;
}
void check_error(cudaError_t status)
{
cudaError_t status2 = cudaGetLastError();
if (status != cudaSuccess)
{
const char *s = cudaGetErrorString(status);
char buffer[256];
printf("CUDA Error: %s\n", s);
snprintf(buffer, 256, "CUDA Error: %s", s);
#ifdef WIN32
getchar();
#endif
error(buffer);
}
if (status2 != cudaSuccess)
{
const char *s = cudaGetErrorString(status2);
char buffer[256];
printf("CUDA Error Prev: %s\n", s);
snprintf(buffer, 256, "CUDA Error Prev: %s", s);
#ifdef WIN32
getchar();
#endif
error(buffer);
}
}
void check_error_extended(cudaError_t status, const char *file, int line, const char *date_time)
{
if (status != cudaSuccess) {
printf("CUDA status Error: file: %s() : line: %d : build time: %s \n", file, line, date_time);
check_error(status);
}
#ifdef DEBUG
status = cudaDeviceSynchronize();
if (status != cudaSuccess)
printf("CUDA status = cudaDeviceSynchronize() Error: file: %s() : line: %d : build time: %s \n", file, line, date_time);
#endif
check_error(status);
}
dim3 cuda_gridsize(size_t n){
size_t k = (n-1) / BLOCK + 1;
size_t x = k;
size_t y = 1;
if(x > 65535){
x = ceil(sqrt(k));
y = (n-1)/(x*BLOCK) + 1;
}
//dim3 d = { (unsigned int)x, (unsigned int)y, 1 };
dim3 d;
d.x = x;
d.y = y;
d.z = 1;
//printf("%ld %ld %ld %ld\n", n, x, y, x*y*BLOCK);
return d;
}
static cudaStream_t streamsArray[16]; // cudaStreamSynchronize( get_cuda_stream() );
static int streamInit[16] = { 0 };
cudaStream_t get_cuda_stream() {
int i = cuda_get_device();
if (!streamInit[i]) {
//printf("Create CUDA-stream \n");
cudaError_t status = cudaStreamCreate(&streamsArray[i]);
//cudaError_t status = cudaStreamCreateWithFlags(&streamsArray[i], cudaStreamNonBlocking);
if (status != cudaSuccess) {
printf(" cudaStreamCreate error: %d \n", status);
const char *s = cudaGetErrorString(status);
char buffer[256];
printf("CUDA Error: %s\n", s);
status = cudaStreamCreateWithFlags(&streamsArray[i], cudaStreamDefault);
CHECK_CUDA(status);
}
streamInit[i] = 1;
}
return streamsArray[i];
}
static cudaStream_t streamsArray2[16]; // cudaStreamSynchronize( get_cuda_memcpy_stream() );
static int streamInit2[16] = { 0 };
cudaStream_t get_cuda_memcpy_stream() {
int i = cuda_get_device();
if (!streamInit2[i]) {
cudaError_t status = cudaStreamCreate(&streamsArray2[i]);
//cudaError_t status = cudaStreamCreateWithFlags(&streamsArray2[i], cudaStreamNonBlocking);
if (status != cudaSuccess) {
printf(" cudaStreamCreate-Memcpy error: %d \n", status);
const char *s = cudaGetErrorString(status);
char buffer[256];
printf("CUDA Error: %s\n", s);
status = cudaStreamCreateWithFlags(&streamsArray2[i], cudaStreamDefault);
CHECK_CUDA(status);
}
streamInit2[i] = 1;
}
return streamsArray2[i];
}
#ifdef CUDNN
cudnnHandle_t cudnn_handle()
{
static int init[16] = {0};
static cudnnHandle_t handle[16];
int i = cuda_get_device();
if(!init[i]) {
cudnnCreate(&handle[i]);
init[i] = 1;
cudnnStatus_t status = cudnnSetStream(handle[i], get_cuda_stream());
}
return handle[i];
}
void cudnn_check_error(cudnnStatus_t status)
{
#ifdef DEBUG
cudaDeviceSynchronize();
#endif
cudnnStatus_t status2 = CUDNN_STATUS_SUCCESS;
#ifdef CUDNN_ERRQUERY_RAWCODE
cudnnStatus_t status_tmp = cudnnQueryRuntimeError(cudnn_handle(), &status2, CUDNN_ERRQUERY_RAWCODE, NULL);
#endif
if (status != CUDNN_STATUS_SUCCESS)
{
const char *s = cudnnGetErrorString(status);
char buffer[256];
printf("cuDNN Error: %s\n", s);
snprintf(buffer, 256, "cuDNN Error: %s", s);
#ifdef WIN32
getchar();
#endif
error(buffer);
}
if (status2 != CUDNN_STATUS_SUCCESS)
{
const char *s = cudnnGetErrorString(status2);
char buffer[256];
printf("cuDNN Error Prev: %s\n", s);
snprintf(buffer, 256, "cuDNN Error Prev: %s", s);
#ifdef WIN32
getchar();
#endif
error(buffer);
}
}
void cudnn_check_error_extended(cudnnStatus_t status, const char *file, int line, const char *date_time)
{
if (status != CUDNN_STATUS_SUCCESS) {
printf("\n cuDNN status Error in: file: %s() : line: %d : build time: %s \n", file, line, date_time);
cudnn_check_error(status);
}
#ifdef DEBUG
status = cudaDeviceSynchronize();
if (status != CUDNN_STATUS_SUCCESS)
printf("\n cuDNN status = cudaDeviceSynchronize() Error in: file: %s() : line: %d : build time: %s \n", file, line, date_time);
#endif
cudnn_check_error(status);
}
#endif
cublasHandle_t blas_handle()
{
static int init[16] = {0};
static cublasHandle_t handle[16];
int i = cuda_get_device();
if(!init[i]) {
cublasCreate(&handle[i]);
cublasStatus_t status = cublasSetStream(handle[i], get_cuda_stream());
CHECK_CUDA((cudaError_t)status);
init[i] = 1;
}
return handle[i];
}
static float **pinned_ptr = NULL;
static size_t pinned_num_of_blocks = 0;
static size_t pinned_index = 0;
static size_t pinned_block_id = 0;
static const size_t pinned_block_size = (size_t)1024 * 1024 * 1024 * 1; // 1 GB block size
static pthread_mutex_t mutex_pinned = PTHREAD_MUTEX_INITIALIZER;
// free CPU-pinned memory
void free_pinned_memory()
{
if (pinned_ptr) {
int k;
for (k = 0; k < pinned_num_of_blocks; ++k) {
cuda_free_host(pinned_ptr[k]);
}
free(pinned_ptr);
pinned_ptr = NULL;
}
}
// custom CPU-pinned memory allocation
void pre_allocate_pinned_memory(const size_t size)
{
const size_t num_of_blocks = size / pinned_block_size + ((size % pinned_block_size) ? 1 : 0);
printf("pre_allocate... pinned_ptr = %p \n", pinned_ptr);
pthread_mutex_lock(&mutex_pinned);
if (!pinned_ptr) {
pinned_ptr = (float **)calloc(num_of_blocks, sizeof(float *));
if(!pinned_ptr) error("calloc failed in pre_allocate() \n");
printf("pre_allocate: size = %Iu MB, num_of_blocks = %Iu, block_size = %Iu MB \n",
size / (1024*1024), num_of_blocks, pinned_block_size / (1024 * 1024));
int k;
for (k = 0; k < num_of_blocks; ++k) {
cudaError_t status = cudaHostAlloc((void **)&pinned_ptr[k], pinned_block_size, cudaHostRegisterMapped);
if (status != cudaSuccess) fprintf(stderr, " Can't pre-allocate CUDA-pinned buffer on CPU-RAM \n");
CHECK_CUDA(status);
if (!pinned_ptr[k]) error("cudaHostAlloc failed\n");
else {
printf(" Allocated %d pinned block \n", pinned_block_size);
}
}
pinned_num_of_blocks = num_of_blocks;
}
pthread_mutex_unlock(&mutex_pinned);
}
// simple - get pre-allocated pinned memory
float *cuda_make_array_pinned_preallocated(float *x, size_t n)
{
pthread_mutex_lock(&mutex_pinned);
float *x_cpu = NULL;
const size_t memory_step = 512;// 4096;
const size_t size = sizeof(float)*n;
const size_t allocation_size = ((size / memory_step) + 1) * memory_step;
if (pinned_ptr && pinned_block_id < pinned_num_of_blocks && (allocation_size < pinned_block_size/2))
{
if ((allocation_size + pinned_index) > pinned_block_size) {
const float filled = (float)100 * pinned_index / pinned_block_size;
printf("\n Pinned block_id = %d, filled = %f %% \n", pinned_block_id, filled);
pinned_block_id++;
pinned_index = 0;
}
if ((allocation_size + pinned_index) < pinned_block_size && pinned_block_id < pinned_num_of_blocks) {
x_cpu = (float *)((char *)pinned_ptr[pinned_block_id] + pinned_index);
pinned_index += allocation_size;
}
else {
//printf("Pre-allocated pinned memory is over! \n");
}
}
if(!x_cpu) {
if (allocation_size > pinned_block_size / 2) {
printf("Try to allocate new pinned memory, size = %d MB \n", size / (1024 * 1024));
cudaError_t status = cudaHostAlloc((void **)&x_cpu, size, cudaHostRegisterMapped);
if (status != cudaSuccess) fprintf(stderr, " Can't allocate CUDA-pinned memory on CPU-RAM (pre-allocated memory is over too) \n");
CHECK_CUDA(status);
}
else {
printf("Try to allocate new pinned BLOCK, size = %d MB \n", size / (1024 * 1024));
pinned_num_of_blocks++;
pinned_block_id = pinned_num_of_blocks - 1;
pinned_index = 0;
pinned_ptr = (float **)realloc(pinned_ptr, pinned_num_of_blocks * sizeof(float *));
cudaError_t status = cudaHostAlloc((void **)&pinned_ptr[pinned_block_id], pinned_block_size, cudaHostRegisterMapped);
if (status != cudaSuccess) fprintf(stderr, " Can't pre-allocate CUDA-pinned buffer on CPU-RAM \n");
CHECK_CUDA(status);
x_cpu = pinned_ptr[pinned_block_id];
}
}
if (x) {
cudaError_t status = cudaMemcpyAsync(x_cpu, x, size, cudaMemcpyDefault, get_cuda_stream());
CHECK_CUDA(status);
}
pthread_mutex_unlock(&mutex_pinned);
return x_cpu;
}
float *cuda_make_array_pinned(float *x, size_t n)
{
float *x_gpu;
size_t size = sizeof(float)*n;
//cudaError_t status = cudaMalloc((void **)&x_gpu, size);
cudaError_t status = cudaHostAlloc((void **)&x_gpu, size, cudaHostRegisterMapped);
if (status != cudaSuccess) fprintf(stderr, " Can't allocate CUDA-pinned memory on CPU-RAM \n");
CHECK_CUDA(status);
if (x) {
status = cudaMemcpyAsync(x_gpu, x, size, cudaMemcpyDefault, get_cuda_stream());
CHECK_CUDA(status);
}
if (!x_gpu) error("cudaHostAlloc failed\n");
return x_gpu;
}
float *cuda_make_array(float *x, size_t n)
{
float *x_gpu;
size_t size = sizeof(float)*n;
cudaError_t status = cudaMalloc((void **)&x_gpu, size);
//cudaError_t status = cudaMallocManaged((void **)&x_gpu, size, cudaMemAttachGlobal);
//status = cudaMemAdvise(x_gpu, size, cudaMemAdviseSetPreferredLocation, cudaCpuDeviceId);
if (status != cudaSuccess) fprintf(stderr, " Try to set subdivisions=64 in your cfg-file. \n");
CHECK_CUDA(status);
if(x){
//status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice);
status = cudaMemcpyAsync(x_gpu, x, size, cudaMemcpyDefault, get_cuda_stream());
CHECK_CUDA(status);
}
if(!x_gpu) error("Cuda malloc failed\n");
return x_gpu;
}
void cuda_random(float *x_gpu, size_t n)
{
static curandGenerator_t gen[16];
static int init[16] = {0};
int i = cuda_get_device();
if(!init[i]){
curandCreateGenerator(&gen[i], CURAND_RNG_PSEUDO_DEFAULT);
curandSetPseudoRandomGeneratorSeed(gen[i], time(0));
init[i] = 1;
}
curandGenerateUniform(gen[i], x_gpu, n);
CHECK_CUDA(cudaPeekAtLastError());
}
float cuda_compare(float *x_gpu, float *x, size_t n, char *s)
{
float* tmp = (float*)calloc(n, sizeof(float));
cuda_pull_array(x_gpu, tmp, n);
//int i;
//for(i = 0; i < n; ++i) printf("%f %f\n", tmp[i], x[i]);
axpy_cpu(n, -1, x, 1, tmp, 1);
float err = dot_cpu(n, tmp, 1, tmp, 1);
printf("Error %s: %f\n", s, sqrt(err/n));
free(tmp);
return err;
}
int *cuda_make_int_array(size_t n)
{
int *x_gpu;
size_t size = sizeof(int)*n;
cudaError_t status = cudaMalloc((void **)&x_gpu, size);
if(status != cudaSuccess) fprintf(stderr, " Try to set subdivisions=64 in your cfg-file. \n");
CHECK_CUDA(status);
return x_gpu;
}
int *cuda_make_int_array_new_api(int *x, size_t n)
{
int *x_gpu;
size_t size = sizeof(int)*n;
cudaError_t status = cudaMalloc((void **)&x_gpu, size);
CHECK_CUDA(status);
if (x) {
//status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice, get_cuda_stream());
cudaError_t status = cudaMemcpyAsync(x_gpu, x, size, cudaMemcpyHostToDevice, get_cuda_stream());
CHECK_CUDA(status);
}
if (!x_gpu) error("Cuda malloc failed\n");
return x_gpu;
}
void cuda_free(float *x_gpu)
{
//cudaStreamSynchronize(get_cuda_stream());
cudaError_t status = cudaFree(x_gpu);
CHECK_CUDA(status);
}
void cuda_free_host(float *x_cpu)
{
//cudaStreamSynchronize(get_cuda_stream());
cudaError_t status = cudaFreeHost(x_cpu);
CHECK_CUDA(status);
}
void cuda_push_array(float *x_gpu, float *x, size_t n)
{
size_t size = sizeof(float)*n;
//cudaError_t status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice);
cudaError_t status = cudaMemcpyAsync(x_gpu, x, size, cudaMemcpyDefault, get_cuda_stream());
CHECK_CUDA(status);
}
void cuda_pull_array(float *x_gpu, float *x, size_t n)
{
size_t size = sizeof(float)*n;
//cudaError_t status = cudaMemcpy(x, x_gpu, size, cudaMemcpyDeviceToHost);
cudaError_t status = cudaMemcpyAsync(x, x_gpu, size, cudaMemcpyDefault, get_cuda_stream());
CHECK_CUDA(status);
cudaStreamSynchronize(get_cuda_stream());
}
void cuda_pull_array_async(float *x_gpu, float *x, size_t n)
{
size_t size = sizeof(float)*n;
cudaError_t status = cudaMemcpyAsync(x, x_gpu, size, cudaMemcpyDefault, get_cuda_stream());
check_error(status);
//cudaStreamSynchronize(get_cuda_stream());
}
int get_number_of_blocks(int array_size, int block_size)
{
return array_size / block_size + ((array_size % block_size > 0) ? 1 : 0);
}
int get_gpu_compute_capability(int i)
{
typedef struct cudaDeviceProp cudaDeviceProp;
cudaDeviceProp prop;
cudaError_t status = cudaGetDeviceProperties(&prop, i);
CHECK_CUDA(status);
int cc = prop.major * 100 + prop.minor * 10; // __CUDA_ARCH__ format
return cc;
}
void show_cuda_cudnn_info()
{
int cuda_version = 0, cuda_driver_version = 0, device_count = 0;
CHECK_CUDA(cudaRuntimeGetVersion(&cuda_version));
CHECK_CUDA(cudaDriverGetVersion(&cuda_driver_version));
fprintf(stderr, " CUDA-version: %d (%d)", cuda_version, cuda_driver_version);
if(cuda_version < cuda_driver_version) fprintf(stderr, "\n Warning: CUDA-version is lower than Driver-version! \n");
#ifdef CUDNN
fprintf(stderr, ", cuDNN: %d.%d.%d", CUDNN_MAJOR, CUDNN_MINOR, CUDNN_PATCHLEVEL);
#endif // CUDNN
#ifdef CUDNN_HALF
fprintf(stderr, ", CUDNN_HALF=1");
#endif // CUDNN_HALF
CHECK_CUDA(cudaGetDeviceCount(&device_count));
fprintf(stderr, ", GPU count: %d ", device_count);
fprintf(stderr, " \n");
}
#else // GPU
#include "darknet.h"
void cuda_set_device(int n) {}
#endif // GPU