mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.2 KiB
106 lines
3.2 KiB
#include "upsample_layer.h" |
|
#include "dark_cuda.h" |
|
#include "blas.h" |
|
|
|
#include <stdio.h> |
|
|
|
layer make_upsample_layer(int batch, int w, int h, int c, int stride) |
|
{ |
|
layer l = { (LAYER_TYPE)0 }; |
|
l.type = UPSAMPLE; |
|
l.batch = batch; |
|
l.w = w; |
|
l.h = h; |
|
l.c = c; |
|
l.out_w = w*stride; |
|
l.out_h = h*stride; |
|
l.out_c = c; |
|
if(stride < 0){ |
|
stride = -stride; |
|
l.reverse=1; |
|
l.out_w = w/stride; |
|
l.out_h = h/stride; |
|
} |
|
l.stride = stride; |
|
l.outputs = l.out_w*l.out_h*l.out_c; |
|
l.inputs = l.w*l.h*l.c; |
|
l.delta = (float*)calloc(l.outputs * batch, sizeof(float)); |
|
l.output = (float*)calloc(l.outputs * batch, sizeof(float)); |
|
|
|
l.forward = forward_upsample_layer; |
|
l.backward = backward_upsample_layer; |
|
#ifdef GPU |
|
l.forward_gpu = forward_upsample_layer_gpu; |
|
l.backward_gpu = backward_upsample_layer_gpu; |
|
|
|
l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch); |
|
l.output_gpu = cuda_make_array(l.output, l.outputs*batch); |
|
#endif |
|
if(l.reverse) fprintf(stderr, "downsample %2dx %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c); |
|
else fprintf(stderr, "upsample %2dx %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c); |
|
return l; |
|
} |
|
|
|
void resize_upsample_layer(layer *l, int w, int h) |
|
{ |
|
l->w = w; |
|
l->h = h; |
|
l->out_w = w*l->stride; |
|
l->out_h = h*l->stride; |
|
if(l->reverse){ |
|
l->out_w = w/l->stride; |
|
l->out_h = h/l->stride; |
|
} |
|
l->outputs = l->out_w*l->out_h*l->out_c; |
|
l->inputs = l->h*l->w*l->c; |
|
l->delta = (float*)realloc(l->delta, l->outputs * l->batch * sizeof(float)); |
|
l->output = (float*)realloc(l->output, l->outputs * l->batch * sizeof(float)); |
|
|
|
#ifdef GPU |
|
cuda_free(l->output_gpu); |
|
cuda_free(l->delta_gpu); |
|
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); |
|
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); |
|
#endif |
|
|
|
} |
|
|
|
void forward_upsample_layer(const layer l, network_state net) |
|
{ |
|
fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
|
if(l.reverse){ |
|
upsample_cpu(l.output, l.out_w, l.out_h, l.c, l.batch, l.stride, 0, l.scale, net.input); |
|
}else{ |
|
upsample_cpu(net.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.scale, l.output); |
|
} |
|
} |
|
|
|
void backward_upsample_layer(const layer l, network_state state) |
|
{ |
|
if(l.reverse){ |
|
upsample_cpu(l.delta, l.out_w, l.out_h, l.c, l.batch, l.stride, 1, l.scale, state.delta); |
|
}else{ |
|
upsample_cpu(state.delta, l.w, l.h, l.c, l.batch, l.stride, 0, l.scale, l.delta); |
|
} |
|
} |
|
|
|
#ifdef GPU |
|
void forward_upsample_layer_gpu(const layer l, network_state state) |
|
{ |
|
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); |
|
if(l.reverse){ |
|
upsample_gpu(l.output_gpu, l.out_w, l.out_h, l.c, l.batch, l.stride, 0, l.scale, state.input); |
|
}else{ |
|
upsample_gpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.scale, l.output_gpu); |
|
} |
|
} |
|
|
|
void backward_upsample_layer_gpu(const layer l, network_state state) |
|
{ |
|
if(l.reverse){ |
|
upsample_gpu(l.delta_gpu, l.out_w, l.out_h, l.c, l.batch, l.stride, 1, l.scale, state.delta); |
|
}else{ |
|
upsample_gpu(state.delta, l.w, l.h, l.c, l.batch, l.stride, 0, l.scale, l.delta_gpu); |
|
} |
|
} |
|
#endif
|
|
|