mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
660 lines
24 KiB
660 lines
24 KiB
#pragma once |
|
#ifdef YOLODLL_EXPORTS |
|
#if defined(_MSC_VER) |
|
#define YOLODLL_API __declspec(dllexport) |
|
#else |
|
#define YOLODLL_API __attribute__((visibility("default"))) |
|
#endif |
|
#else |
|
#if defined(_MSC_VER) |
|
#define YOLODLL_API __declspec(dllimport) |
|
#else |
|
#define YOLODLL_API |
|
#endif |
|
#endif |
|
|
|
struct bbox_t { |
|
unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box |
|
float prob; // confidence - probability that the object was found correctly |
|
unsigned int obj_id; // class of object - from range [0, classes-1] |
|
unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object) |
|
unsigned int frames_counter;// counter of frames on which the object was detected |
|
}; |
|
|
|
struct image_t { |
|
int h; // height |
|
int w; // width |
|
int c; // number of chanels (3 - for RGB) |
|
float *data; // pointer to the image data |
|
}; |
|
|
|
#define C_SHARP_MAX_OBJECTS 1000 |
|
struct bbox_t_container { |
|
bbox_t candidates[C_SHARP_MAX_OBJECTS]; |
|
}; |
|
|
|
#ifdef __cplusplus |
|
#include <memory> |
|
#include <vector> |
|
#include <deque> |
|
#include <algorithm> |
|
|
|
#ifdef OPENCV |
|
#include <opencv2/opencv.hpp> // C++ |
|
#include "opencv2/highgui/highgui_c.h" // C |
|
#include "opencv2/imgproc/imgproc_c.h" // C |
|
#endif // OPENCV |
|
|
|
extern "C" YOLODLL_API int init(const char *configurationFilename, const char *weightsFilename, int gpu); |
|
extern "C" YOLODLL_API int detect_image(const char *filename, bbox_t_container &container); |
|
extern "C" YOLODLL_API int detect_mat(const uint8_t* data, const size_t data_length, bbox_t_container &container); |
|
extern "C" YOLODLL_API int dispose(); |
|
extern "C" YOLODLL_API int get_device_count(); |
|
extern "C" YOLODLL_API int get_device_name(int gpu, char* deviceName); |
|
|
|
class Detector { |
|
std::shared_ptr<void> detector_gpu_ptr; |
|
std::deque<std::vector<bbox_t>> prev_bbox_vec_deque; |
|
const int cur_gpu_id; |
|
public: |
|
float nms = .4; |
|
bool wait_stream; |
|
|
|
YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0); |
|
YOLODLL_API ~Detector(); |
|
|
|
YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false); |
|
YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false); |
|
static YOLODLL_API image_t load_image(std::string image_filename); |
|
static YOLODLL_API void free_image(image_t m); |
|
YOLODLL_API int get_net_width() const; |
|
YOLODLL_API int get_net_height() const; |
|
YOLODLL_API int get_net_color_depth() const; |
|
|
|
YOLODLL_API std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true, |
|
int const frames_story = 10, int const max_dist = 150); |
|
|
|
std::vector<bbox_t> detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false) |
|
{ |
|
if (img.data == NULL) |
|
throw std::runtime_error("Image is empty"); |
|
auto detection_boxes = detect(img, thresh, use_mean); |
|
float wk = (float)init_w / img.w, hk = (float)init_h / img.h; |
|
for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk; |
|
return detection_boxes; |
|
} |
|
|
|
#ifdef OPENCV |
|
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false) |
|
{ |
|
if(mat.data == NULL) |
|
throw std::runtime_error("Image is empty"); |
|
auto image_ptr = mat_to_image_resize(mat); |
|
return detect_resized(*image_ptr, mat.cols, mat.rows, thresh, use_mean); |
|
} |
|
|
|
std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const |
|
{ |
|
if (mat.data == NULL) return std::shared_ptr<image_t>(NULL); |
|
|
|
cv::Size network_size = cv::Size(get_net_width(), get_net_height()); |
|
cv::Mat det_mat; |
|
if (mat.size() != network_size) |
|
cv::resize(mat, det_mat, network_size); |
|
else |
|
det_mat = mat; // only reference is copied |
|
|
|
return mat_to_image(det_mat); |
|
} |
|
|
|
static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src) |
|
{ |
|
cv::Mat img; |
|
cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR); |
|
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; }); |
|
std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img); |
|
*image_ptr = ipl_to_image(ipl_small.get()); |
|
return image_ptr; |
|
} |
|
|
|
private: |
|
|
|
static image_t ipl_to_image(IplImage* src) |
|
{ |
|
unsigned char *data = (unsigned char *)src->imageData; |
|
int h = src->height; |
|
int w = src->width; |
|
int c = src->nChannels; |
|
int step = src->widthStep; |
|
image_t out = make_image_custom(w, h, c); |
|
int count = 0; |
|
|
|
for (int k = 0; k < c; ++k) { |
|
for (int i = 0; i < h; ++i) { |
|
int i_step = i*step; |
|
for (int j = 0; j < w; ++j) { |
|
out.data[count++] = data[i_step + j*c + k] / 255.; |
|
} |
|
} |
|
} |
|
|
|
return out; |
|
} |
|
|
|
static image_t make_empty_image(int w, int h, int c) |
|
{ |
|
image_t out; |
|
out.data = 0; |
|
out.h = h; |
|
out.w = w; |
|
out.c = c; |
|
return out; |
|
} |
|
|
|
static image_t make_image_custom(int w, int h, int c) |
|
{ |
|
image_t out = make_empty_image(w, h, c); |
|
out.data = (float *)calloc(h*w*c, sizeof(float)); |
|
return out; |
|
} |
|
|
|
#endif // OPENCV |
|
|
|
}; |
|
|
|
|
|
|
|
#if defined(TRACK_OPTFLOW) && defined(OPENCV) && defined(GPU) |
|
|
|
#include <opencv2/cudaoptflow.hpp> |
|
#include <opencv2/cudaimgproc.hpp> |
|
#include <opencv2/cudaarithm.hpp> |
|
#include <opencv2/core/cuda.hpp> |
|
|
|
class Tracker_optflow { |
|
public: |
|
const int gpu_count; |
|
const int gpu_id; |
|
const int flow_error; |
|
|
|
|
|
Tracker_optflow(int _gpu_id = 0, int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) : |
|
gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)), |
|
flow_error((_flow_error > 0)? _flow_error:(win_size*4)) |
|
{ |
|
int const old_gpu_id = cv::cuda::getDevice(); |
|
cv::cuda::setDevice(gpu_id); |
|
|
|
stream = cv::cuda::Stream(); |
|
|
|
sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create(); |
|
sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31 |
|
sync_PyrLKOpticalFlow_gpu->setMaxLevel(max_level); // +- 3 pt |
|
sync_PyrLKOpticalFlow_gpu->setNumIters(iterations); // 2000, def: 30 |
|
|
|
cv::cuda::setDevice(old_gpu_id); |
|
} |
|
|
|
// just to avoid extra allocations |
|
cv::cuda::GpuMat src_mat_gpu; |
|
cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu; |
|
cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu; |
|
cv::cuda::GpuMat status_gpu, err_gpu; |
|
|
|
cv::cuda::GpuMat src_grey_gpu; // used in both functions |
|
cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu; |
|
cv::cuda::Stream stream; |
|
|
|
std::vector<bbox_t> cur_bbox_vec; |
|
std::vector<bool> good_bbox_vec_flags; |
|
cv::Mat prev_pts_flow_cpu; |
|
|
|
void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec) |
|
{ |
|
cur_bbox_vec = _cur_bbox_vec; |
|
good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true); |
|
cv::Mat prev_pts, cur_pts_flow_cpu; |
|
|
|
for (auto &i : cur_bbox_vec) { |
|
float x_center = (i.x + i.w / 2.0F); |
|
float y_center = (i.y + i.h / 2.0F); |
|
prev_pts.push_back(cv::Point2f(x_center, y_center)); |
|
} |
|
|
|
if (prev_pts.rows == 0) |
|
prev_pts_flow_cpu = cv::Mat(); |
|
else |
|
cv::transpose(prev_pts, prev_pts_flow_cpu); |
|
|
|
if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) { |
|
prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type()); |
|
cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type()); |
|
|
|
status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1); |
|
err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1); |
|
} |
|
|
|
prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream); |
|
} |
|
|
|
|
|
void update_tracking_flow(cv::Mat src_mat, std::vector<bbox_t> _cur_bbox_vec) |
|
{ |
|
int const old_gpu_id = cv::cuda::getDevice(); |
|
if (old_gpu_id != gpu_id) |
|
cv::cuda::setDevice(gpu_id); |
|
|
|
if (src_mat.channels() == 3) { |
|
if (src_mat_gpu.cols == 0) { |
|
src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type()); |
|
src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1); |
|
} |
|
|
|
update_cur_bbox_vec(_cur_bbox_vec); |
|
|
|
//src_grey_gpu.upload(src_mat, stream); // use BGR |
|
src_mat_gpu.upload(src_mat, stream); |
|
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream); |
|
} |
|
if (old_gpu_id != gpu_id) |
|
cv::cuda::setDevice(old_gpu_id); |
|
} |
|
|
|
|
|
std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, bool check_error = true) |
|
{ |
|
if (sync_PyrLKOpticalFlow_gpu.empty()) { |
|
std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n"; |
|
return cur_bbox_vec; |
|
} |
|
|
|
int const old_gpu_id = cv::cuda::getDevice(); |
|
if(old_gpu_id != gpu_id) |
|
cv::cuda::setDevice(gpu_id); |
|
|
|
if (dst_mat_gpu.cols == 0) { |
|
dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type()); |
|
dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1); |
|
} |
|
|
|
//dst_grey_gpu.upload(dst_mat, stream); // use BGR |
|
dst_mat_gpu.upload(dst_mat, stream); |
|
cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 1, stream); |
|
|
|
if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) { |
|
stream.waitForCompletion(); |
|
src_grey_gpu = dst_grey_gpu.clone(); |
|
cv::cuda::setDevice(old_gpu_id); |
|
return cur_bbox_vec; |
|
} |
|
|
|
////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x |
|
sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream); // OpenCV 3.x |
|
|
|
cv::Mat cur_pts_flow_cpu; |
|
cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream); |
|
|
|
dst_grey_gpu.copyTo(src_grey_gpu, stream); |
|
|
|
cv::Mat err_cpu, status_cpu; |
|
err_gpu.download(err_cpu, stream); |
|
status_gpu.download(status_cpu, stream); |
|
|
|
stream.waitForCompletion(); |
|
|
|
std::vector<bbox_t> result_bbox_vec; |
|
|
|
if (err_cpu.cols == cur_bbox_vec.size() && status_cpu.cols == cur_bbox_vec.size()) |
|
{ |
|
for (size_t i = 0; i < cur_bbox_vec.size(); ++i) |
|
{ |
|
cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i); |
|
cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i); |
|
|
|
float moved_x = cur_key_pt.x - prev_key_pt.x; |
|
float moved_y = cur_key_pt.y - prev_key_pt.y; |
|
|
|
if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i]) |
|
if (err_cpu.at<float>(0, i) < flow_error && status_cpu.at<unsigned char>(0, i) != 0 && |
|
((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0) |
|
{ |
|
cur_bbox_vec[i].x += moved_x + 0.5; |
|
cur_bbox_vec[i].y += moved_y + 0.5; |
|
result_bbox_vec.push_back(cur_bbox_vec[i]); |
|
} |
|
else good_bbox_vec_flags[i] = false; |
|
else good_bbox_vec_flags[i] = false; |
|
|
|
//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]); |
|
} |
|
} |
|
|
|
cur_pts_flow_gpu.swap(prev_pts_flow_gpu); |
|
cur_pts_flow_cpu.copyTo(prev_pts_flow_cpu); |
|
|
|
if (old_gpu_id != gpu_id) |
|
cv::cuda::setDevice(old_gpu_id); |
|
|
|
return result_bbox_vec; |
|
} |
|
|
|
}; |
|
|
|
#elif defined(TRACK_OPTFLOW) && defined(OPENCV) |
|
|
|
//#include <opencv2/optflow.hpp> |
|
#include <opencv2/video/tracking.hpp> |
|
|
|
class Tracker_optflow { |
|
public: |
|
const int flow_error; |
|
|
|
|
|
Tracker_optflow(int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) : |
|
flow_error((_flow_error > 0)? _flow_error:(win_size*4)) |
|
{ |
|
sync_PyrLKOpticalFlow = cv::SparsePyrLKOpticalFlow::create(); |
|
sync_PyrLKOpticalFlow->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31 |
|
sync_PyrLKOpticalFlow->setMaxLevel(max_level); // +- 3 pt |
|
|
|
} |
|
|
|
// just to avoid extra allocations |
|
cv::Mat dst_grey; |
|
cv::Mat prev_pts_flow, cur_pts_flow; |
|
cv::Mat status, err; |
|
|
|
cv::Mat src_grey; // used in both functions |
|
cv::Ptr<cv::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow; |
|
|
|
std::vector<bbox_t> cur_bbox_vec; |
|
std::vector<bool> good_bbox_vec_flags; |
|
|
|
void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec) |
|
{ |
|
cur_bbox_vec = _cur_bbox_vec; |
|
good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true); |
|
cv::Mat prev_pts, cur_pts_flow; |
|
|
|
for (auto &i : cur_bbox_vec) { |
|
float x_center = (i.x + i.w / 2.0F); |
|
float y_center = (i.y + i.h / 2.0F); |
|
prev_pts.push_back(cv::Point2f(x_center, y_center)); |
|
} |
|
|
|
if (prev_pts.rows == 0) |
|
prev_pts_flow = cv::Mat(); |
|
else |
|
cv::transpose(prev_pts, prev_pts_flow); |
|
} |
|
|
|
|
|
void update_tracking_flow(cv::Mat new_src_mat, std::vector<bbox_t> _cur_bbox_vec) |
|
{ |
|
if (new_src_mat.channels() == 3) { |
|
|
|
update_cur_bbox_vec(_cur_bbox_vec); |
|
|
|
cv::cvtColor(new_src_mat, src_grey, CV_BGR2GRAY, 1); |
|
} |
|
} |
|
|
|
|
|
std::vector<bbox_t> tracking_flow(cv::Mat new_dst_mat, bool check_error = true) |
|
{ |
|
if (sync_PyrLKOpticalFlow.empty()) { |
|
std::cout << "sync_PyrLKOpticalFlow isn't initialized \n"; |
|
return cur_bbox_vec; |
|
} |
|
|
|
cv::cvtColor(new_dst_mat, dst_grey, CV_BGR2GRAY, 1); |
|
|
|
if (src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols) { |
|
src_grey = dst_grey.clone(); |
|
return cur_bbox_vec; |
|
} |
|
|
|
if (prev_pts_flow.cols < 1) { |
|
return cur_bbox_vec; |
|
} |
|
|
|
////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x |
|
sync_PyrLKOpticalFlow->calc(src_grey, dst_grey, prev_pts_flow, cur_pts_flow, status, err); // OpenCV 3.x |
|
|
|
dst_grey.copyTo(src_grey); |
|
|
|
std::vector<bbox_t> result_bbox_vec; |
|
|
|
if (err.rows == cur_bbox_vec.size() && status.rows == cur_bbox_vec.size()) |
|
{ |
|
for (size_t i = 0; i < cur_bbox_vec.size(); ++i) |
|
{ |
|
cv::Point2f cur_key_pt = cur_pts_flow.at<cv::Point2f>(0, i); |
|
cv::Point2f prev_key_pt = prev_pts_flow.at<cv::Point2f>(0, i); |
|
|
|
float moved_x = cur_key_pt.x - prev_key_pt.x; |
|
float moved_y = cur_key_pt.y - prev_key_pt.y; |
|
|
|
if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i]) |
|
if (err.at<float>(0, i) < flow_error && status.at<unsigned char>(0, i) != 0 && |
|
((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0) |
|
{ |
|
cur_bbox_vec[i].x += moved_x + 0.5; |
|
cur_bbox_vec[i].y += moved_y + 0.5; |
|
result_bbox_vec.push_back(cur_bbox_vec[i]); |
|
} |
|
else good_bbox_vec_flags[i] = false; |
|
else good_bbox_vec_flags[i] = false; |
|
|
|
//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]); |
|
} |
|
} |
|
|
|
prev_pts_flow = cur_pts_flow.clone(); |
|
|
|
return result_bbox_vec; |
|
} |
|
|
|
}; |
|
#else |
|
|
|
class Tracker_optflow {}; |
|
|
|
#endif // defined(TRACK_OPTFLOW) && defined(OPENCV) |
|
|
|
|
|
#ifdef OPENCV |
|
|
|
static cv::Scalar obj_id_to_color(int obj_id) { |
|
int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } }; |
|
int const offset = obj_id * 123457 % 6; |
|
int const color_scale = 150 + (obj_id * 123457) % 100; |
|
cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]); |
|
color *= color_scale; |
|
return color; |
|
} |
|
|
|
class preview_boxes_t { |
|
enum { frames_history = 30 }; // how long to keep the history saved |
|
|
|
struct preview_box_track_t { |
|
unsigned int track_id, obj_id, last_showed_frames_ago; |
|
bool current_detection; |
|
bbox_t bbox; |
|
cv::Mat mat_obj, mat_resized_obj; |
|
preview_box_track_t() : track_id(0), obj_id(0), last_showed_frames_ago(frames_history), current_detection(false) {} |
|
}; |
|
std::vector<preview_box_track_t> preview_box_track_id; |
|
size_t const preview_box_size, bottom_offset; |
|
bool const one_off_detections; |
|
public: |
|
preview_boxes_t(size_t _preview_box_size = 100, size_t _bottom_offset = 100, bool _one_off_detections = false) : |
|
preview_box_size(_preview_box_size), bottom_offset(_bottom_offset), one_off_detections(_one_off_detections) |
|
{} |
|
|
|
void set(cv::Mat src_mat, std::vector<bbox_t> result_vec) |
|
{ |
|
size_t const count_preview_boxes = src_mat.cols / preview_box_size; |
|
if (preview_box_track_id.size() != count_preview_boxes) preview_box_track_id.resize(count_preview_boxes); |
|
|
|
// increment frames history |
|
for (auto &i : preview_box_track_id) |
|
i.last_showed_frames_ago = std::min((unsigned)frames_history, i.last_showed_frames_ago + 1); |
|
|
|
// occupy empty boxes |
|
for (auto &k : result_vec) { |
|
bool found = false; |
|
// find the same (track_id) |
|
for (auto &i : preview_box_track_id) { |
|
if (i.track_id == k.track_id) { |
|
if (!one_off_detections) i.last_showed_frames_ago = 0; // for tracked objects |
|
found = true; |
|
break; |
|
} |
|
} |
|
if (!found) { |
|
// find empty box |
|
for (auto &i : preview_box_track_id) { |
|
if (i.last_showed_frames_ago == frames_history) { |
|
if (!one_off_detections && k.frames_counter == 0) break; // don't show if obj isn't tracked yet |
|
i.track_id = k.track_id; |
|
i.obj_id = k.obj_id; |
|
i.bbox = k; |
|
i.last_showed_frames_ago = 0; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// draw preview box (from old or current frame) |
|
for (size_t i = 0; i < preview_box_track_id.size(); ++i) |
|
{ |
|
// get object image |
|
cv::Mat dst = preview_box_track_id[i].mat_resized_obj; |
|
preview_box_track_id[i].current_detection = false; |
|
|
|
for (auto &k : result_vec) { |
|
if (preview_box_track_id[i].track_id == k.track_id) { |
|
if (one_off_detections && preview_box_track_id[i].last_showed_frames_ago > 0) { |
|
preview_box_track_id[i].last_showed_frames_ago = frames_history; break; |
|
} |
|
bbox_t b = k; |
|
cv::Rect r(b.x, b.y, b.w, b.h); |
|
cv::Rect img_rect(cv::Point2i(0, 0), src_mat.size()); |
|
cv::Rect rect_roi = r & img_rect; |
|
if (rect_roi.width > 1 || rect_roi.height > 1) { |
|
cv::Mat roi = src_mat(rect_roi); |
|
cv::resize(roi, dst, cv::Size(preview_box_size, preview_box_size), cv::INTER_NEAREST); |
|
preview_box_track_id[i].mat_obj = roi.clone(); |
|
preview_box_track_id[i].mat_resized_obj = dst.clone(); |
|
preview_box_track_id[i].current_detection = true; |
|
preview_box_track_id[i].bbox = k; |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void draw(cv::Mat draw_mat, bool show_small_boxes = false) |
|
{ |
|
// draw preview box (from old or current frame) |
|
for (size_t i = 0; i < preview_box_track_id.size(); ++i) |
|
{ |
|
auto &prev_box = preview_box_track_id[i]; |
|
|
|
// draw object image |
|
cv::Mat dst = prev_box.mat_resized_obj; |
|
if (prev_box.last_showed_frames_ago < frames_history && |
|
dst.size() == cv::Size(preview_box_size, preview_box_size)) |
|
{ |
|
cv::Rect dst_rect_roi(cv::Point2i(i * preview_box_size, draw_mat.rows - bottom_offset), dst.size()); |
|
cv::Mat dst_roi = draw_mat(dst_rect_roi); |
|
dst.copyTo(dst_roi); |
|
|
|
cv::Scalar color = obj_id_to_color(prev_box.obj_id); |
|
int thickness = (prev_box.current_detection) ? 5 : 1; |
|
cv::rectangle(draw_mat, dst_rect_roi, color, thickness); |
|
|
|
unsigned int const track_id = prev_box.track_id; |
|
std::string track_id_str = (track_id > 0) ? std::to_string(track_id) : ""; |
|
putText(draw_mat, track_id_str, dst_rect_roi.tl() - cv::Point2i(-4, 5), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.9, cv::Scalar(0, 0, 0), 2); |
|
|
|
std::string size_str = std::to_string(prev_box.bbox.w) + "x" + std::to_string(prev_box.bbox.h); |
|
putText(draw_mat, size_str, dst_rect_roi.tl() + cv::Point2i(0, 12), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1); |
|
|
|
if (!one_off_detections && prev_box.current_detection) { |
|
cv::line(draw_mat, dst_rect_roi.tl() + cv::Point2i(preview_box_size, 0), |
|
cv::Point2i(prev_box.bbox.x, prev_box.bbox.y + prev_box.bbox.h), |
|
color); |
|
} |
|
|
|
if (one_off_detections && show_small_boxes) { |
|
cv::Rect src_rect_roi(cv::Point2i(prev_box.bbox.x, prev_box.bbox.y), |
|
cv::Size(prev_box.bbox.w, prev_box.bbox.h)); |
|
unsigned int const color_history = (255 * prev_box.last_showed_frames_ago) / frames_history; |
|
color = cv::Scalar(255 - 3 * color_history, 255 - 2 * color_history, 255 - 1 * color_history); |
|
if (prev_box.mat_obj.size() == src_rect_roi.size()) { |
|
prev_box.mat_obj.copyTo(draw_mat(src_rect_roi)); |
|
} |
|
cv::rectangle(draw_mat, src_rect_roi, color, thickness); |
|
putText(draw_mat, track_id_str, src_rect_roi.tl() - cv::Point2i(0, 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1); |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
#endif // OPENCV |
|
|
|
//extern "C" { |
|
#endif // __cplusplus |
|
|
|
/* |
|
// C - wrappers |
|
YOLODLL_API void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id); |
|
YOLODLL_API void delete_detector(); |
|
YOLODLL_API bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size); |
|
YOLODLL_API bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size); |
|
YOLODLL_API bbox_t* detect(image_t img, int *result_size); |
|
YOLODLL_API image_t load_img(char *image_filename); |
|
YOLODLL_API void free_img(image_t m); |
|
|
|
#ifdef __cplusplus |
|
} // extern "C" |
|
|
|
static std::shared_ptr<void> c_detector_ptr; |
|
static std::vector<bbox_t> c_result_vec; |
|
|
|
void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id) { |
|
c_detector_ptr = std::make_shared<YOLODLL_API Detector>(cfg_filename, weight_filename, gpu_id); |
|
} |
|
|
|
void delete_detector() { c_detector_ptr.reset(); } |
|
|
|
bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size) { |
|
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect(img, thresh, use_mean); |
|
*result_size = c_result_vec.size(); |
|
return c_result_vec.data(); |
|
} |
|
|
|
bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size) { |
|
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect_resized(img, init_w, init_h, thresh, use_mean); |
|
*result_size = c_result_vec.size(); |
|
return c_result_vec.data(); |
|
} |
|
|
|
bbox_t* detect(image_t img, int *result_size) { |
|
return detect_custom(img, 0.24, true, result_size); |
|
} |
|
|
|
image_t load_img(char *image_filename) { |
|
return static_cast<Detector*>(c_detector_ptr.get())->load_image(image_filename); |
|
} |
|
void free_img(image_t m) { |
|
static_cast<Detector*>(c_detector_ptr.get())->free_image(m); |
|
} |
|
|
|
#endif // __cplusplus |
|
*/
|
|
|