mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
5.0 KiB
165 lines
5.0 KiB
''' |
|
Created on Feb 20, 2017 |
|
|
|
@author: jumabek |
|
''' |
|
from os import listdir |
|
from os.path import isfile, join |
|
import argparse |
|
#import cv2 |
|
import numpy as np |
|
import sys |
|
import os |
|
import shutil |
|
import random |
|
import math |
|
|
|
width_in_cfg_file = 416. |
|
height_in_cfg_file = 416. |
|
|
|
def IOU(x,centroids): |
|
similarities = [] |
|
k = len(centroids) |
|
for centroid in centroids: |
|
c_w,c_h = centroid |
|
w,h = x |
|
if c_w>=w and c_h>=h: |
|
similarity = w*h/(c_w*c_h) |
|
elif c_w>=w and c_h<=h: |
|
similarity = w*c_h/(w*h + (c_w-w)*c_h) |
|
elif c_w<=w and c_h>=h: |
|
similarity = c_w*h/(w*h + c_w*(c_h-h)) |
|
else: #means both w,h are bigger than c_w and c_h respectively |
|
similarity = (c_w*c_h)/(w*h) |
|
similarities.append(similarity) # will become (k,) shape |
|
return np.array(similarities) |
|
|
|
def avg_IOU(X,centroids): |
|
n,d = X.shape |
|
sum = 0. |
|
for i in range(X.shape[0]): |
|
#note IOU() will return array which contains IoU for each centroid and X[i] // slightly ineffective, but I am too lazy |
|
sum+= max(IOU(X[i],centroids)) |
|
return sum/n |
|
|
|
def write_anchors_to_file(centroids,X,anchor_file): |
|
f = open(anchor_file,'w') |
|
|
|
anchors = centroids.copy() |
|
print(anchors.shape) |
|
|
|
for i in range(anchors.shape[0]): |
|
anchors[i][0]*=width_in_cfg_file/32. |
|
anchors[i][1]*=height_in_cfg_file/32. |
|
|
|
|
|
widths = anchors[:,0] |
|
sorted_indices = np.argsort(widths) |
|
|
|
print('Anchors = ', anchors[sorted_indices]) |
|
|
|
for i in sorted_indices[:-1]: |
|
f.write('%0.2f,%0.2f, '%(anchors[i,0],anchors[i,1])) |
|
|
|
#there should not be comma after last anchor, that's why |
|
f.write('%0.2f,%0.2f\n'%(anchors[sorted_indices[-1:],0],anchors[sorted_indices[-1:],1])) |
|
|
|
f.write('%f\n'%(avg_IOU(X,centroids))) |
|
print() |
|
|
|
def kmeans(X,centroids,eps,anchor_file): |
|
|
|
N = X.shape[0] |
|
iterations = 0 |
|
k,dim = centroids.shape |
|
prev_assignments = np.ones(N)*(-1) |
|
iter = 0 |
|
old_D = np.zeros((N,k)) |
|
|
|
while True: |
|
D = [] |
|
iter+=1 |
|
for i in range(N): |
|
d = 1 - IOU(X[i],centroids) |
|
D.append(d) |
|
D = np.array(D) # D.shape = (N,k) |
|
|
|
print("iter {}: dists = {}".format(iter,np.sum(np.abs(old_D-D)))) |
|
|
|
#assign samples to centroids |
|
assignments = np.argmin(D,axis=1) |
|
|
|
if (assignments == prev_assignments).all() : |
|
print("Centroids = ",centroids) |
|
write_anchors_to_file(centroids,X,anchor_file) |
|
return |
|
|
|
#calculate new centroids |
|
centroid_sums=np.zeros((k,dim),np.float) |
|
for i in range(N): |
|
centroid_sums[assignments[i]]+=X[i] |
|
for j in range(k): |
|
centroids[j] = centroid_sums[j]/(np.sum(assignments==j)) |
|
|
|
prev_assignments = assignments.copy() |
|
old_D = D.copy() |
|
|
|
def main(argv): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-filelist', default = '\\path\\to\\voc\\filelist\\train.txt', |
|
help='path to filelist\n' ) |
|
parser.add_argument('-output_dir', default = 'generated_anchors/anchors', type = str, |
|
help='Output anchor directory\n' ) |
|
parser.add_argument('-num_clusters', default = 0, type = int, |
|
help='number of clusters\n' ) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
if not os.path.exists(args.output_dir): |
|
os.mkdir(args.output_dir) |
|
|
|
f = open(args.filelist) |
|
|
|
lines = [line.rstrip('\n') for line in f.readlines()] |
|
|
|
annotation_dims = [] |
|
|
|
size = np.zeros((1,1,3)) |
|
for line in lines: |
|
|
|
#line = line.replace('images','labels') |
|
#line = line.replace('img1','labels') |
|
line = line.replace('JPEGImages','labels') |
|
|
|
|
|
line = line.replace('.jpg','.txt') |
|
line = line.replace('.png','.txt') |
|
print(line) |
|
f2 = open(line) |
|
for line in f2.readlines(): |
|
line = line.rstrip('\n') |
|
w,h = line.split(' ')[3:] |
|
#print(w,h) |
|
annotation_dims.append(tuple(map(float,(w,h)))) |
|
annotation_dims = np.array(annotation_dims) |
|
|
|
eps = 0.005 |
|
|
|
if args.num_clusters == 0: |
|
for num_clusters in range(1,11): #we make 1 through 10 clusters |
|
anchor_file = join( args.output_dir,'anchors%d.txt'%(num_clusters)) |
|
|
|
indices = [ random.randrange(annotation_dims.shape[0]) for i in range(num_clusters)] |
|
centroids = annotation_dims[indices] |
|
kmeans(annotation_dims,centroids,eps,anchor_file) |
|
print('centroids.shape', centroids.shape) |
|
else: |
|
anchor_file = join( args.output_dir,'anchors%d.txt'%(args.num_clusters)) |
|
indices = [ random.randrange(annotation_dims.shape[0]) for i in range(args.num_clusters)] |
|
centroids = annotation_dims[indices] |
|
kmeans(annotation_dims,centroids,eps,anchor_file) |
|
print('centroids.shape', centroids.shape) |
|
|
|
if __name__=="__main__": |
|
main(sys.argv)
|
|
|