mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
408 lines
15 KiB
408 lines
15 KiB
#include <iostream> |
|
#include <iomanip> |
|
#include <string> |
|
#include <vector> |
|
#include <queue> |
|
#include <fstream> |
|
#include <thread> |
|
#include <atomic> |
|
#include <mutex> // std::mutex, std::unique_lock |
|
#include <condition_variable> // std::condition_variable |
|
|
|
#ifdef _WIN32 |
|
#define OPENCV |
|
#endif |
|
|
|
// To use tracking - uncomment the following line. Tracking is supported only by OpenCV 3.x |
|
//#define TRACK_OPTFLOW |
|
|
|
#include "yolo_v2_class.hpp" // imported functions from DLL |
|
|
|
#ifdef OPENCV |
|
#include <opencv2/opencv.hpp> // C++ |
|
#include "opencv2/core/version.hpp" |
|
#ifndef CV_VERSION_EPOCH |
|
#include "opencv2/videoio/videoio.hpp" |
|
#define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)""CVAUX_STR(CV_VERSION_REVISION) |
|
#pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib") |
|
#pragma comment(lib, "opencv_cudaoptflow" OPENCV_VERSION ".lib") |
|
#pragma comment(lib, "opencv_cudaimgproc" OPENCV_VERSION ".lib") |
|
#pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") |
|
#pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") |
|
#pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") |
|
#else |
|
#define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)""CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR) |
|
#pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") |
|
#pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") |
|
#pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") |
|
#endif |
|
|
|
|
|
cv::Scalar obj_id_to_color(int obj_id) { |
|
int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } }; |
|
int const offset = obj_id * 123457 % 6; |
|
int const color_scale = 150 + (obj_id * 123457) % 100; |
|
cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]); |
|
color *= color_scale; |
|
return color; |
|
} |
|
|
|
class preview_boxes_t { |
|
enum { frames_history = 30 }; // how long to keep the history saved |
|
|
|
struct preview_box_track_t { |
|
unsigned int track_id, obj_id, last_showed_frames_ago; |
|
cv::Mat mat_obj; |
|
preview_box_track_t() : track_id(0), obj_id(0), last_showed_frames_ago(frames_history) {} |
|
}; |
|
std::vector<preview_box_track_t> preview_box_track_id; |
|
size_t const preview_box_size, bottom_offset; |
|
bool const one_off_detections; |
|
public: |
|
preview_boxes_t(size_t _preview_box_size = 100, size_t _bottom_offset = 100, bool _one_off_detections = false) : |
|
preview_box_size(_preview_box_size), bottom_offset(_bottom_offset), one_off_detections(_one_off_detections) |
|
{} |
|
|
|
void draw_preview_boxes(cv::Mat src_mat, cv::Mat draw_mat, std::vector<bbox_t> result_vec, bool draw_boxes = true) |
|
{ |
|
size_t const count_preview_boxes = draw_mat.cols / preview_box_size; |
|
if (preview_box_track_id.size() != count_preview_boxes) preview_box_track_id.resize(count_preview_boxes); |
|
|
|
// increment frames history |
|
for (auto &i : preview_box_track_id) |
|
i.last_showed_frames_ago = std::min((unsigned)frames_history, i.last_showed_frames_ago + 1); |
|
|
|
// occupy empty boxes |
|
for (auto &k : result_vec) { |
|
bool found = false; |
|
for (auto &i : preview_box_track_id) { |
|
if (i.track_id == k.track_id) { |
|
if(!one_off_detections) |
|
i.last_showed_frames_ago = 0; |
|
found = true; |
|
break; |
|
} |
|
} |
|
if (!found) { |
|
for (auto &i : preview_box_track_id) { |
|
if (i.last_showed_frames_ago == frames_history) { |
|
if (!one_off_detections && k.frames_counter == 0) break; |
|
i.track_id = k.track_id; |
|
i.obj_id = k.obj_id; |
|
i.last_showed_frames_ago = 0; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// draw preview box (from old or current frame) |
|
for (size_t i = 0; i < preview_box_track_id.size(); ++i) |
|
{ |
|
// get object image |
|
cv::Mat dst = preview_box_track_id[i].mat_obj; |
|
bool current_detection = false; |
|
|
|
for (auto &k : result_vec) { |
|
if (preview_box_track_id[i].track_id == k.track_id) { |
|
if (one_off_detections && preview_box_track_id[i].last_showed_frames_ago > 0) break; |
|
bbox_t b = k; |
|
cv::Rect r(b.x, b.y, b.w, b.h); |
|
cv::Rect img_rect(cv::Point2i(0, 0), src_mat.size()); |
|
cv::Rect rect_roi = r & img_rect; |
|
if (rect_roi.width > 1 || rect_roi.height > 1) { |
|
cv::Mat roi = src_mat(rect_roi); |
|
cv::resize(roi, dst, cv::Size(preview_box_size, preview_box_size)); |
|
preview_box_track_id[i].mat_obj = dst.clone(); |
|
current_detection = true; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
// draw object image |
|
if (draw_boxes) { |
|
cv::Mat dst = preview_box_track_id[i].mat_obj; |
|
if (preview_box_track_id[i].last_showed_frames_ago < frames_history && |
|
dst.size() == cv::Size(preview_box_size, preview_box_size)) |
|
{ |
|
cv::Rect dst_rect_roi(cv::Point2i(i * preview_box_size, draw_mat.rows - bottom_offset), dst.size()); |
|
cv::Mat dst_roi = draw_mat(dst_rect_roi); |
|
dst.copyTo(dst_roi); |
|
|
|
cv::Scalar color = obj_id_to_color(preview_box_track_id[i].obj_id); |
|
int thickness = (current_detection) ? 5 : 1; |
|
cv::rectangle(draw_mat, dst_rect_roi, color, thickness); |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
void draw_boxes(cv::Mat mat_img, std::vector<bbox_t> result_vec, std::vector<std::string> obj_names, |
|
unsigned int wait_msec = 0, int current_det_fps = -1, int current_cap_fps = -1) |
|
{ |
|
int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } }; |
|
|
|
for (auto &i : result_vec) { |
|
cv::Scalar color = obj_id_to_color(i.obj_id); |
|
cv::rectangle(mat_img, cv::Rect(i.x, i.y, i.w, i.h), color, 5); |
|
if (obj_names.size() > i.obj_id) { |
|
std::string obj_name = obj_names[i.obj_id]; |
|
if (i.track_id > 0) obj_name += " - " + std::to_string(i.track_id); |
|
cv::Size const text_size = getTextSize(obj_name, cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, 2, 0); |
|
int const max_width = (text_size.width > i.w + 2) ? text_size.width : (i.w + 2); |
|
cv::rectangle(mat_img, cv::Point2f(std::max((int)i.x - 3, 0), std::max((int)i.y - 30, 0)), |
|
cv::Point2f(std::min((int)i.x + max_width, mat_img.cols-1), std::min((int)i.y, mat_img.rows-1)), |
|
color, CV_FILLED, 8, 0); |
|
putText(mat_img, obj_name, cv::Point2f(i.x, i.y - 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(0, 0, 0), 2); |
|
} |
|
} |
|
if (current_det_fps >= 0 && current_cap_fps >= 0) { |
|
std::string fps_str = "FPS detection: " + std::to_string(current_det_fps) + " FPS capture: " + std::to_string(current_cap_fps); |
|
putText(mat_img, fps_str, cv::Point2f(10, 20), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(50, 255, 0), 2); |
|
} |
|
|
|
cv::imshow("window name", mat_img); |
|
cv::waitKey(wait_msec); |
|
} |
|
#endif // OPENCV |
|
|
|
|
|
void show_console_result(std::vector<bbox_t> const result_vec, std::vector<std::string> const obj_names) { |
|
for (auto &i : result_vec) { |
|
if (obj_names.size() > i.obj_id) std::cout << obj_names[i.obj_id] << " - "; |
|
std::cout << "obj_id = " << i.obj_id << ", x = " << i.x << ", y = " << i.y |
|
<< ", w = " << i.w << ", h = " << i.h |
|
<< std::setprecision(3) << ", prob = " << i.prob << std::endl; |
|
} |
|
} |
|
|
|
std::vector<std::string> objects_names_from_file(std::string const filename) { |
|
std::ifstream file(filename); |
|
std::vector<std::string> file_lines; |
|
if (!file.is_open()) return file_lines; |
|
for(std::string line; getline(file, line);) file_lines.push_back(line); |
|
std::cout << "object names loaded \n"; |
|
return file_lines; |
|
} |
|
|
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
std::string names_file = "data/voc.names"; |
|
std::string cfg_file = "cfg/yolo-voc.cfg"; |
|
std::string weights_file = "yolo-voc.weights"; |
|
std::string filename; |
|
|
|
if (argc > 4) { //voc.names yolo-voc.cfg yolo-voc.weights test.mp4 |
|
names_file = argv[1]; |
|
cfg_file = argv[2]; |
|
weights_file = argv[3]; |
|
filename = argv[4]; |
|
} |
|
else if (argc > 1) filename = argv[1]; |
|
|
|
Detector detector(cfg_file, weights_file); |
|
|
|
auto obj_names = objects_names_from_file(names_file); |
|
std::string out_videofile = "result.avi"; |
|
bool const save_output_videofile = false; |
|
#ifdef TRACK_OPTFLOW |
|
Tracker_optflow tracker_flow; |
|
detector.wait_stream = true; |
|
#endif |
|
|
|
while (true) |
|
{ |
|
std::cout << "input image or video filename: "; |
|
if(filename.size() == 0) std::cin >> filename; |
|
if (filename.size() == 0) break; |
|
|
|
try { |
|
#ifdef OPENCV |
|
preview_boxes_t large_preview(100, 150, false), small_preview(50, 50, true); |
|
|
|
std::string const file_ext = filename.substr(filename.find_last_of(".") + 1); |
|
std::string const protocol = filename.substr(0, 7); |
|
if (file_ext == "avi" || file_ext == "mp4" || file_ext == "mjpg" || file_ext == "mov" || // video file |
|
protocol == "rtmp://" || protocol == "rtsp://" || protocol == "http://" || protocol == "https:/") // video network stream |
|
{ |
|
cv::Mat cap_frame, cur_frame, det_frame, write_frame; |
|
std::queue<cv::Mat> track_optflow_queue; |
|
int passed_flow_frames = 0; |
|
std::shared_ptr<image_t> det_image; |
|
std::vector<bbox_t> result_vec, thread_result_vec; |
|
detector.nms = 0.02; // comment it - if track_id is not required |
|
std::atomic<bool> consumed, videowrite_ready; |
|
consumed = true; |
|
videowrite_ready = true; |
|
std::atomic<int> fps_det_counter, fps_cap_counter; |
|
fps_det_counter = 0; |
|
fps_cap_counter = 0; |
|
int current_det_fps = 0, current_cap_fps = 0; |
|
std::thread t_detect, t_cap, t_videowrite; |
|
std::mutex mtx; |
|
std::condition_variable cv_detected, cv_pre_tracked; |
|
std::chrono::steady_clock::time_point steady_start, steady_end; |
|
cv::VideoCapture cap(filename); cap >> cur_frame; |
|
int const video_fps = cap.get(CV_CAP_PROP_FPS); |
|
cv::Size const frame_size = cur_frame.size(); |
|
cv::VideoWriter output_video; |
|
if (save_output_videofile) |
|
output_video.open(out_videofile, CV_FOURCC('D', 'I', 'V', 'X'), std::max(35, video_fps), frame_size, true); |
|
|
|
while (!cur_frame.empty()) |
|
{ |
|
// always sync |
|
if (t_cap.joinable()) { |
|
t_cap.join(); |
|
++fps_cap_counter; |
|
cur_frame = cap_frame.clone(); |
|
} |
|
t_cap = std::thread([&]() { cap >> cap_frame; }); |
|
|
|
// swap result bouned-boxes and input-frame |
|
if(consumed) |
|
{ |
|
std::unique_lock<std::mutex> lock(mtx); |
|
det_image = detector.mat_to_image_resize(cur_frame); |
|
auto old_result_vec = result_vec; |
|
result_vec = thread_result_vec; |
|
result_vec = detector.tracking_id(result_vec); // comment it - if track_id is not required |
|
#ifdef TRACK_OPTFLOW |
|
// track optical flow |
|
if (track_optflow_queue.size() > 0) { |
|
small_preview.draw_preview_boxes(track_optflow_queue.front(), cur_frame, result_vec, false); |
|
|
|
std::queue<cv::Mat> new_track_optflow_queue; |
|
//std::cout << "\n !!!! all = " << track_optflow_queue.size() << ", cur = " << passed_flow_frames << std::endl; |
|
tracker_flow.update_tracking_flow(track_optflow_queue.front()); |
|
|
|
while (track_optflow_queue.size() > 1) { |
|
track_optflow_queue.pop(); |
|
result_vec = tracker_flow.tracking_flow(track_optflow_queue.front(), result_vec); |
|
if (track_optflow_queue.size() <= passed_flow_frames && new_track_optflow_queue.size() == 0) |
|
new_track_optflow_queue = track_optflow_queue; |
|
} |
|
track_optflow_queue = new_track_optflow_queue; |
|
passed_flow_frames = 0; |
|
} |
|
#endif |
|
// add old tracked objects |
|
for (auto &i : old_result_vec) { |
|
auto it = std::find_if(result_vec.begin(), result_vec.end(), |
|
[&i](bbox_t const& b) { return b.track_id == i.track_id && b.obj_id == i.obj_id; }); |
|
bool track_id_absent = (it == result_vec.end()); |
|
if (track_id_absent) { |
|
if (i.frames_counter-- > 1) |
|
result_vec.push_back(i); |
|
} |
|
else |
|
it->frames_counter = std::min((unsigned)3, i.frames_counter + 1); |
|
} |
|
|
|
consumed = false; |
|
cv_pre_tracked.notify_all(); |
|
} |
|
// launch thread once - Detection |
|
if (!t_detect.joinable()) { |
|
t_detect = std::thread([&]() { |
|
auto current_image = det_image; |
|
consumed = true; |
|
while (current_image.use_count() > 0) { |
|
auto result = detector.detect_resized(*current_image, frame_size, 0.20, false); // true |
|
++fps_det_counter; |
|
std::unique_lock<std::mutex> lock(mtx); |
|
thread_result_vec = result; |
|
current_image = det_image; |
|
consumed = true; |
|
cv_detected.notify_all(); |
|
if(detector.wait_stream) |
|
while (consumed) cv_pre_tracked.wait(lock); |
|
} |
|
}); |
|
} |
|
|
|
if (!cur_frame.empty()) { |
|
steady_end = std::chrono::steady_clock::now(); |
|
if (std::chrono::duration<double>(steady_end - steady_start).count() >= 1) { |
|
current_det_fps = fps_det_counter; |
|
current_cap_fps = fps_cap_counter; |
|
steady_start = steady_end; |
|
fps_det_counter = 0; |
|
fps_cap_counter = 0; |
|
} |
|
|
|
#ifdef TRACK_OPTFLOW |
|
++passed_flow_frames; |
|
track_optflow_queue.push(cur_frame.clone()); |
|
result_vec = tracker_flow.tracking_flow(cur_frame, result_vec, true); // track optical flow |
|
small_preview.draw_preview_boxes(cur_frame.clone(), cur_frame, result_vec, true); |
|
#endif |
|
large_preview.draw_preview_boxes(cur_frame.clone(), cur_frame, result_vec, true); |
|
|
|
draw_boxes(cur_frame, result_vec, obj_names, 3, current_det_fps, current_cap_fps); // 3 or 16ms |
|
//show_console_result(result_vec, obj_names); |
|
|
|
if (output_video.isOpened() && videowrite_ready) { |
|
if (t_videowrite.joinable()) t_videowrite.join(); |
|
write_frame = cur_frame.clone(); |
|
videowrite_ready = false; |
|
t_videowrite = std::thread([&]() { |
|
output_video << write_frame; videowrite_ready = true; |
|
}); |
|
} |
|
} |
|
|
|
#ifndef TRACK_OPTFLOW |
|
// wait detection result for video-file only (not for net-cam) |
|
if (protocol != "rtsp://" && protocol != "http://" && protocol != "https:/") { |
|
std::unique_lock<std::mutex> lock(mtx); |
|
while (!consumed) cv_detected.wait(lock); |
|
} |
|
#endif |
|
} |
|
if (t_cap.joinable()) t_cap.join(); |
|
if (t_detect.joinable()) t_detect.join(); |
|
if (t_videowrite.joinable()) t_videowrite.join(); |
|
std::cout << "Video ended \n"; |
|
} |
|
else if (file_ext == "txt") { // list of image files |
|
std::ifstream file(filename); |
|
if (!file.is_open()) std::cout << "File not found! \n"; |
|
else |
|
for (std::string line; file >> line;) { |
|
std::cout << line << std::endl; |
|
cv::Mat mat_img = cv::imread(line); |
|
std::vector<bbox_t> result_vec = detector.detect(mat_img); |
|
show_console_result(result_vec, obj_names); |
|
//draw_boxes(mat_img, result_vec, obj_names); |
|
//cv::imwrite("res_" + line, mat_img); |
|
} |
|
|
|
} |
|
else { // image file |
|
cv::Mat mat_img = cv::imread(filename); |
|
std::vector<bbox_t> result_vec = detector.detect(mat_img); |
|
result_vec = detector.tracking_id(result_vec); // comment it - if track_id is not required |
|
draw_boxes(mat_img, result_vec, obj_names); |
|
show_console_result(result_vec, obj_names); |
|
} |
|
#else |
|
//std::vector<bbox_t> result_vec = detector.detect(filename); |
|
|
|
auto img = detector.load_image(filename); |
|
std::vector<bbox_t> result_vec = detector.detect(img); |
|
detector.free_image(img); |
|
show_console_result(result_vec, obj_names); |
|
#endif |
|
} |
|
catch (std::exception &e) { std::cerr << "exception: " << e.what() << "\n"; getchar(); } |
|
catch (...) { std::cerr << "unknown exception \n"; getchar(); } |
|
filename.clear(); |
|
} |
|
|
|
return 0; |
|
} |