mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
313 lines
9.1 KiB
313 lines
9.1 KiB
#pragma once |
|
#include <memory> |
|
#include <vector> |
|
#include <deque> |
|
#include <algorithm> |
|
|
|
#ifdef OPENCV |
|
#include <opencv2/opencv.hpp> // C++ |
|
#include "opencv2/highgui/highgui_c.h" // C |
|
#include "opencv2/imgproc/imgproc_c.h" // C |
|
|
|
#include <opencv2/cudaoptflow.hpp> |
|
#include <opencv2/cudaimgproc.hpp> |
|
#include <opencv2/cudaarithm.hpp> |
|
#include <opencv2/core/cuda.hpp> |
|
#endif // OPENCV |
|
|
|
#ifdef YOLODLL_EXPORTS |
|
#if defined(_MSC_VER) |
|
#define YOLODLL_API __declspec(dllexport) |
|
#else |
|
#define YOLODLL_API __attribute__((visibility("default"))) |
|
#endif |
|
#else |
|
#if defined(_MSC_VER) |
|
#define YOLODLL_API __declspec(dllimport) |
|
#else |
|
#define YOLODLL_API |
|
#endif |
|
#endif |
|
|
|
struct bbox_t { |
|
unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box |
|
float prob; // confidence - probability that the object was found correctly |
|
unsigned int obj_id; // class of object - from range [0, classes-1] |
|
unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object) |
|
}; |
|
|
|
struct image_t { |
|
int h; // height |
|
int w; // width |
|
int c; // number of chanels (3 - for RGB) |
|
float *data; // pointer to the image data |
|
}; |
|
|
|
|
|
class Detector { |
|
std::shared_ptr<void> detector_gpu_ptr; |
|
std::deque<std::vector<bbox_t>> prev_bbox_vec_deque; |
|
public: |
|
float nms = .4; |
|
|
|
YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0); |
|
YOLODLL_API ~Detector(); |
|
|
|
YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false); |
|
YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false); |
|
static YOLODLL_API image_t load_image(std::string image_filename); |
|
static YOLODLL_API void free_image(image_t m); |
|
YOLODLL_API int get_net_width() const; |
|
YOLODLL_API int get_net_height() const; |
|
|
|
YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 6); |
|
|
|
#ifdef OPENCV |
|
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false) |
|
{ |
|
if(mat.data == NULL) |
|
throw std::runtime_error("Image is empty"); |
|
auto image_ptr = mat_to_image_resize(mat); |
|
return detect_resized(*image_ptr, mat.size(), thresh, use_mean); |
|
} |
|
|
|
std::vector<bbox_t> detect_resized(image_t img, cv::Size init_size, float thresh = 0.2, bool use_mean = false) |
|
{ |
|
if (img.data == NULL) |
|
throw std::runtime_error("Image is empty"); |
|
auto detection_boxes = detect(img, thresh, use_mean); |
|
float wk = (float)init_size.width / img.w, hk = (float)init_size.height / img.h; |
|
for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk; |
|
return detection_boxes; |
|
} |
|
|
|
std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const |
|
{ |
|
if (mat.data == NULL) return std::shared_ptr<image_t>(NULL); |
|
cv::Mat det_mat; |
|
cv::resize(mat, det_mat, cv::Size(get_net_width(), get_net_height())); |
|
return mat_to_image(det_mat); |
|
} |
|
|
|
static std::shared_ptr<image_t> mat_to_image(cv::Mat img) |
|
{ |
|
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; }); |
|
std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img); |
|
*image_ptr = ipl_to_image(ipl_small.get()); |
|
rgbgr_image(*image_ptr); |
|
return image_ptr; |
|
} |
|
|
|
private: |
|
|
|
static image_t ipl_to_image(IplImage* src) |
|
{ |
|
unsigned char *data = (unsigned char *)src->imageData; |
|
int h = src->height; |
|
int w = src->width; |
|
int c = src->nChannels; |
|
int step = src->widthStep; |
|
image_t out = make_image_custom(w, h, c); |
|
int i, j, k, count = 0;; |
|
|
|
for (k = 0; k < c; ++k) { |
|
for (i = 0; i < h; ++i) { |
|
for (j = 0; j < w; ++j) { |
|
out.data[count++] = data[i*step + j*c + k] / 255.; |
|
} |
|
} |
|
} |
|
return out; |
|
} |
|
|
|
static image_t make_empty_image(int w, int h, int c) |
|
{ |
|
image_t out; |
|
out.data = 0; |
|
out.h = h; |
|
out.w = w; |
|
out.c = c; |
|
return out; |
|
} |
|
|
|
static image_t make_image_custom(int w, int h, int c) |
|
{ |
|
image_t out = make_empty_image(w, h, c); |
|
out.data = (float *)calloc(h*w*c, sizeof(float)); |
|
return out; |
|
} |
|
|
|
static void rgbgr_image(image_t im) |
|
{ |
|
int i; |
|
for (i = 0; i < im.w*im.h; ++i) { |
|
float swap = im.data[i]; |
|
im.data[i] = im.data[i + im.w*im.h * 2]; |
|
im.data[i + im.w*im.h * 2] = swap; |
|
} |
|
} |
|
|
|
#endif // OPENCV |
|
|
|
}; |
|
|
|
|
|
#if defined(TRACK_OPTFLOW) && defined(OPENCV) |
|
|
|
class Tracker_optflow { |
|
public: |
|
int gpu_id; |
|
|
|
Tracker_optflow(int _gpu_id = 0) : gpu_id(_gpu_id) |
|
{ |
|
int const old_gpu_id = cv::cuda::getDevice(); |
|
static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount(); |
|
if (gpu_count > gpu_id) |
|
cv::cuda::setDevice(gpu_id); |
|
|
|
sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create(); |
|
//sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(31, 31)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(31, 31); |
|
//sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(15, 15)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(15, 15); |
|
|
|
sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(21, 21)); |
|
sync_PyrLKOpticalFlow_gpu->setMaxLevel(50); //sync_PyrLKOpticalFlow_gpu.maxLevel = 8; // +-32 points // def: 3 |
|
sync_PyrLKOpticalFlow_gpu->setNumIters(6000); //sync_PyrLKOpticalFlow_gpu.iters = 8000; // def: 30 |
|
} |
|
|
|
// just to avoid extra allocations |
|
cv::cuda::GpuMat src_mat_gpu; |
|
cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu; |
|
cv::cuda::GpuMat tmp_grey_gpu; |
|
cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu; |
|
cv::cuda::GpuMat status_gpu, err_gpu; |
|
|
|
cv::cuda::GpuMat src_grey_gpu; // used in both functions |
|
cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu; |
|
|
|
void update_tracking_flow(cv::Mat src_mat) |
|
{ |
|
int const old_gpu_id = cv::cuda::getDevice(); |
|
static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount(); |
|
if (gpu_count > gpu_id) |
|
cv::cuda::setDevice(gpu_id); |
|
|
|
cv::cuda::Stream stream; |
|
|
|
if (src_mat.channels() == 3) { |
|
if (src_mat_gpu.cols == 0) { |
|
src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type()); |
|
src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1); |
|
} |
|
|
|
src_mat_gpu.upload(src_mat, stream); |
|
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 0, stream); |
|
} |
|
cv::cuda::setDevice(old_gpu_id); |
|
} |
|
|
|
|
|
std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, std::vector<bbox_t> cur_bbox_vec) |
|
{ |
|
if (sync_PyrLKOpticalFlow_gpu.empty()) { |
|
std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n"; |
|
return cur_bbox_vec; |
|
} |
|
|
|
int const old_gpu_id = cv::cuda::getDevice(); |
|
static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount(); |
|
if (gpu_count > gpu_id) |
|
cv::cuda::setDevice(gpu_id); |
|
|
|
cv::cuda::Stream stream; |
|
|
|
if (dst_mat_gpu.cols == 0) { |
|
dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type()); |
|
dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1); |
|
tmp_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1); |
|
} |
|
|
|
|
|
dst_mat_gpu.upload(dst_mat, stream); |
|
|
|
cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 0, stream); |
|
|
|
if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) { |
|
stream.waitForCompletion(); |
|
src_grey_gpu = dst_grey_gpu.clone(); |
|
cv::cuda::setDevice(old_gpu_id); |
|
return cur_bbox_vec; |
|
} |
|
|
|
cv::Mat prev_pts, prev_pts_flow_cpu, cur_pts_flow_cpu; |
|
|
|
for (auto &i : cur_bbox_vec) { |
|
float x_center = (i.x + i.w / 2); |
|
float y_center = (i.y + i.h / 2); |
|
prev_pts.push_back(cv::Point2f(x_center, y_center)); |
|
} |
|
|
|
|
|
if (prev_pts.rows == 0) |
|
prev_pts_flow_cpu = cv::Mat(); |
|
else |
|
cv::transpose(prev_pts, prev_pts_flow_cpu); |
|
|
|
|
|
if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) { |
|
prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type()); |
|
cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type()); |
|
|
|
status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1); |
|
err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1); |
|
} |
|
|
|
prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream); |
|
|
|
|
|
dst_grey_gpu.copyTo(tmp_grey_gpu, stream); |
|
|
|
////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x |
|
sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream); // OpenCV 3.x |
|
|
|
cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream); |
|
|
|
tmp_grey_gpu.copyTo(src_grey_gpu, stream); |
|
|
|
cv::Mat err_cpu, status_cpu; |
|
err_gpu.download(err_cpu, stream); |
|
status_gpu.download(status_cpu, stream); |
|
|
|
stream.waitForCompletion(); |
|
|
|
std::vector<bbox_t> result_bbox_vec; |
|
|
|
for (size_t i = 0; i < cur_bbox_vec.size(); ++i) |
|
{ |
|
cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i); |
|
cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i); |
|
|
|
float moved_x = cur_key_pt.x - prev_key_pt.x; |
|
float moved_y = cur_key_pt.y - prev_key_pt.y; |
|
|
|
if (err_cpu.cols > i && status_cpu.cols > i) |
|
if (abs(moved_x) < 100 && abs(moved_y) < 100) |
|
//if (err_cpu.at<float>(0, i) < 60 && status_cpu.at<unsigned char>(0, i) != 0) |
|
{ |
|
cur_bbox_vec[i].x += moved_x + 0.5; |
|
cur_bbox_vec[i].y += moved_y + 0.5; |
|
result_bbox_vec.push_back(cur_bbox_vec[i]); |
|
} |
|
} |
|
|
|
cv::cuda::setDevice(old_gpu_id); |
|
|
|
return result_bbox_vec; |
|
} |
|
|
|
}; |
|
#else |
|
|
|
class Tracker_optflow {}; |
|
|
|
#endif // defined(TRACK_OPTFLOW) && defined(OPENCV) |
|
|
|
|