mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
398 lines
15 KiB
398 lines
15 KiB
#include "gru_layer.h" |
|
#include "connected_layer.h" |
|
#include "utils.h" |
|
#include "dark_cuda.h" |
|
#include "blas.h" |
|
#include "gemm.h" |
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
static void increment_layer(layer *l, int steps) |
|
{ |
|
int num = l->outputs*l->batch*steps; |
|
l->output += num; |
|
l->delta += num; |
|
l->x += num; |
|
l->x_norm += num; |
|
|
|
#ifdef GPU |
|
l->output_gpu += num; |
|
l->delta_gpu += num; |
|
l->x_gpu += num; |
|
l->x_norm_gpu += num; |
|
#endif |
|
} |
|
|
|
layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) |
|
{ |
|
fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs); |
|
batch = batch / steps; |
|
layer l = { (LAYER_TYPE)0 }; |
|
l.batch = batch; |
|
l.type = GRU; |
|
l.steps = steps; |
|
l.inputs = inputs; |
|
|
|
l.input_z_layer = (layer*)xcalloc(1,sizeof(layer)); |
|
fprintf(stderr, "\t\t"); |
|
*(l.input_z_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
|
l.input_z_layer->batch = batch; |
|
|
|
l.state_z_layer = (layer*)xcalloc(1,sizeof(layer)); |
|
fprintf(stderr, "\t\t"); |
|
*(l.state_z_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
|
l.state_z_layer->batch = batch; |
|
|
|
|
|
|
|
l.input_r_layer = (layer*)xcalloc(1,sizeof(layer)); |
|
fprintf(stderr, "\t\t"); |
|
*(l.input_r_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
|
l.input_r_layer->batch = batch; |
|
|
|
l.state_r_layer = (layer*)xcalloc(1,sizeof(layer)); |
|
fprintf(stderr, "\t\t"); |
|
*(l.state_r_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
|
l.state_r_layer->batch = batch; |
|
|
|
|
|
|
|
l.input_h_layer = (layer*)xcalloc(1,sizeof(layer)); |
|
fprintf(stderr, "\t\t"); |
|
*(l.input_h_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
|
l.input_h_layer->batch = batch; |
|
|
|
l.state_h_layer = (layer*)xcalloc(1,sizeof(layer)); |
|
fprintf(stderr, "\t\t"); |
|
*(l.state_h_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
|
l.state_h_layer->batch = batch; |
|
|
|
l.batch_normalize = batch_normalize; |
|
|
|
|
|
l.outputs = outputs; |
|
l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float)); |
|
l.delta = (float*)xcalloc(outputs * batch * steps, sizeof(float)); |
|
l.state = (float*)xcalloc(outputs * batch, sizeof(float)); |
|
l.prev_state = (float*)xcalloc(outputs * batch, sizeof(float)); |
|
l.forgot_state = (float*)xcalloc(outputs * batch, sizeof(float)); |
|
l.forgot_delta = (float*)xcalloc(outputs * batch, sizeof(float)); |
|
|
|
l.r_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); |
|
l.z_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); |
|
l.h_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); |
|
|
|
l.forward = forward_gru_layer; |
|
l.backward = backward_gru_layer; |
|
l.update = update_gru_layer; |
|
|
|
#ifdef GPU |
|
l.forward_gpu = forward_gru_layer_gpu; |
|
l.backward_gpu = backward_gru_layer_gpu; |
|
l.update_gpu = update_gru_layer_gpu; |
|
|
|
l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs); |
|
l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs); |
|
l.prev_state_gpu = cuda_make_array(l.output, batch*outputs); |
|
l.state_gpu = cuda_make_array(l.output, batch*outputs); |
|
l.output_gpu = cuda_make_array(l.output, batch*outputs*steps); |
|
l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps); |
|
l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs); |
|
l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs); |
|
l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs); |
|
#endif |
|
|
|
return l; |
|
} |
|
|
|
void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay) |
|
{ |
|
update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); |
|
update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); |
|
update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); |
|
} |
|
|
|
void forward_gru_layer(layer l, network_state state) |
|
{ |
|
network_state s = {0}; |
|
s.train = state.train; |
|
s.workspace = state.workspace; |
|
int i; |
|
layer input_z_layer = *(l.input_z_layer); |
|
layer input_r_layer = *(l.input_r_layer); |
|
layer input_h_layer = *(l.input_h_layer); |
|
|
|
layer state_z_layer = *(l.state_z_layer); |
|
layer state_r_layer = *(l.state_r_layer); |
|
layer state_h_layer = *(l.state_h_layer); |
|
|
|
fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1); |
|
fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1); |
|
fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1); |
|
|
|
fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1); |
|
fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1); |
|
fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1); |
|
if(state.train) { |
|
fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); |
|
copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1); |
|
} |
|
|
|
for (i = 0; i < l.steps; ++i) { |
|
s.input = l.state; |
|
forward_connected_layer(state_z_layer, s); |
|
forward_connected_layer(state_r_layer, s); |
|
|
|
s.input = state.input; |
|
forward_connected_layer(input_z_layer, s); |
|
forward_connected_layer(input_r_layer, s); |
|
forward_connected_layer(input_h_layer, s); |
|
|
|
|
|
copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1); |
|
axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1); |
|
|
|
copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1); |
|
axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1); |
|
|
|
activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC); |
|
activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC); |
|
|
|
copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1); |
|
mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1); |
|
|
|
s.input = l.forgot_state; |
|
forward_connected_layer(state_h_layer, s); |
|
|
|
copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1); |
|
axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1); |
|
|
|
#ifdef USET |
|
activate_array(l.h_cpu, l.outputs*l.batch, TANH); |
|
#else |
|
activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC); |
|
#endif |
|
|
|
weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output); |
|
|
|
copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1); |
|
|
|
state.input += l.inputs*l.batch; |
|
l.output += l.outputs*l.batch; |
|
increment_layer(&input_z_layer, 1); |
|
increment_layer(&input_r_layer, 1); |
|
increment_layer(&input_h_layer, 1); |
|
|
|
increment_layer(&state_z_layer, 1); |
|
increment_layer(&state_r_layer, 1); |
|
increment_layer(&state_h_layer, 1); |
|
} |
|
} |
|
|
|
void backward_gru_layer(layer l, network_state state) |
|
{ |
|
} |
|
|
|
#ifdef GPU |
|
|
|
void pull_gru_layer(layer l) |
|
{ |
|
} |
|
|
|
void push_gru_layer(layer l) |
|
{ |
|
} |
|
|
|
void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay) |
|
{ |
|
update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay); |
|
update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay); |
|
update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay); |
|
update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay); |
|
update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay); |
|
update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay); |
|
} |
|
|
|
void forward_gru_layer_gpu(layer l, network_state state) |
|
{ |
|
network_state s = {0}; |
|
s.train = state.train; |
|
s.workspace = state.workspace; |
|
int i; |
|
layer input_z_layer = *(l.input_z_layer); |
|
layer input_r_layer = *(l.input_r_layer); |
|
layer input_h_layer = *(l.input_h_layer); |
|
|
|
layer state_z_layer = *(l.state_z_layer); |
|
layer state_r_layer = *(l.state_r_layer); |
|
layer state_h_layer = *(l.state_h_layer); |
|
|
|
fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1); |
|
fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1); |
|
fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1); |
|
|
|
fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1); |
|
fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1); |
|
fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1); |
|
if(state.train) { |
|
fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); |
|
copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1); |
|
} |
|
|
|
for (i = 0; i < l.steps; ++i) { |
|
s.input = l.state_gpu; |
|
forward_connected_layer_gpu(state_z_layer, s); |
|
forward_connected_layer_gpu(state_r_layer, s); |
|
|
|
s.input = state.input; |
|
forward_connected_layer_gpu(input_z_layer, s); |
|
forward_connected_layer_gpu(input_r_layer, s); |
|
forward_connected_layer_gpu(input_h_layer, s); |
|
|
|
|
|
copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); |
|
axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); |
|
|
|
copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); |
|
axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); |
|
|
|
activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); |
|
activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); |
|
|
|
copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1); |
|
mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); |
|
|
|
s.input = l.forgot_state_gpu; |
|
forward_connected_layer_gpu(state_h_layer, s); |
|
|
|
copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); |
|
axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); |
|
|
|
#ifdef USET |
|
activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); |
|
#else |
|
activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); |
|
#endif |
|
|
|
weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu); |
|
|
|
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1); |
|
|
|
state.input += l.inputs*l.batch; |
|
l.output_gpu += l.outputs*l.batch; |
|
increment_layer(&input_z_layer, 1); |
|
increment_layer(&input_r_layer, 1); |
|
increment_layer(&input_h_layer, 1); |
|
|
|
increment_layer(&state_z_layer, 1); |
|
increment_layer(&state_r_layer, 1); |
|
increment_layer(&state_h_layer, 1); |
|
} |
|
} |
|
|
|
void backward_gru_layer_gpu(layer l, network_state state) |
|
{ |
|
network_state s = {0}; |
|
s.train = state.train; |
|
s.workspace = state.workspace; |
|
int i; |
|
layer input_z_layer = *(l.input_z_layer); |
|
layer input_r_layer = *(l.input_r_layer); |
|
layer input_h_layer = *(l.input_h_layer); |
|
|
|
layer state_z_layer = *(l.state_z_layer); |
|
layer state_r_layer = *(l.state_r_layer); |
|
layer state_h_layer = *(l.state_h_layer); |
|
|
|
increment_layer(&input_z_layer, l.steps - 1); |
|
increment_layer(&input_r_layer, l.steps - 1); |
|
increment_layer(&input_h_layer, l.steps - 1); |
|
|
|
increment_layer(&state_z_layer, l.steps - 1); |
|
increment_layer(&state_r_layer, l.steps - 1); |
|
increment_layer(&state_h_layer, l.steps - 1); |
|
|
|
state.input += l.inputs*l.batch*(l.steps-1); |
|
if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1); |
|
l.output_gpu += l.outputs*l.batch*(l.steps-1); |
|
l.delta_gpu += l.outputs*l.batch*(l.steps-1); |
|
for (i = l.steps-1; i >= 0; --i) { |
|
if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); |
|
float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; |
|
|
|
copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); |
|
axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); |
|
|
|
copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); |
|
axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); |
|
|
|
activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); |
|
activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); |
|
|
|
copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); |
|
axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); |
|
|
|
#ifdef USET |
|
activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); |
|
#else |
|
activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); |
|
#endif |
|
|
|
weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu); |
|
|
|
#ifdef USET |
|
gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu); |
|
#else |
|
gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu); |
|
#endif |
|
|
|
copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1); |
|
|
|
copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1); |
|
mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); |
|
fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1); |
|
|
|
s.input = l.forgot_state_gpu; |
|
s.delta = l.forgot_delta_gpu; |
|
|
|
backward_connected_layer_gpu(state_h_layer, s); |
|
if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu); |
|
mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu); |
|
|
|
gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu); |
|
copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1); |
|
|
|
gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu); |
|
copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1); |
|
|
|
s.input = l.prev_state_gpu; |
|
s.delta = prev_delta_gpu; |
|
|
|
backward_connected_layer_gpu(state_r_layer, s); |
|
backward_connected_layer_gpu(state_z_layer, s); |
|
|
|
s.input = state.input; |
|
s.delta = state.delta; |
|
|
|
backward_connected_layer_gpu(input_h_layer, s); |
|
backward_connected_layer_gpu(input_r_layer, s); |
|
backward_connected_layer_gpu(input_z_layer, s); |
|
|
|
|
|
state.input -= l.inputs*l.batch; |
|
if(state.delta) state.delta -= l.inputs*l.batch; |
|
l.output_gpu -= l.outputs*l.batch; |
|
l.delta_gpu -= l.outputs*l.batch; |
|
increment_layer(&input_z_layer, -1); |
|
increment_layer(&input_r_layer, -1); |
|
increment_layer(&input_h_layer, -1); |
|
|
|
increment_layer(&state_z_layer, -1); |
|
increment_layer(&state_r_layer, -1); |
|
increment_layer(&state_h_layer, -1); |
|
} |
|
} |
|
#endif
|
|
|