mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
545 lines
15 KiB
545 lines
15 KiB
#include "box.h" |
|
#include <stdio.h> |
|
#include <math.h> |
|
#include <stdlib.h> |
|
|
|
box float_to_box(float *f) |
|
{ |
|
box b; |
|
b.x = f[0]; |
|
b.y = f[1]; |
|
b.w = f[2]; |
|
b.h = f[3]; |
|
return b; |
|
} |
|
|
|
box float_to_box_stride(float *f, int stride) |
|
{ |
|
box b = { 0 }; |
|
b.x = f[0]; |
|
b.y = f[1 * stride]; |
|
b.w = f[2 * stride]; |
|
b.h = f[3 * stride]; |
|
return b; |
|
} |
|
|
|
dbox derivative(box a, box b) |
|
{ |
|
dbox d; |
|
d.dx = 0; |
|
d.dw = 0; |
|
float l1 = a.x - a.w/2; |
|
float l2 = b.x - b.w/2; |
|
if (l1 > l2){ |
|
d.dx -= 1; |
|
d.dw += .5; |
|
} |
|
float r1 = a.x + a.w/2; |
|
float r2 = b.x + b.w/2; |
|
if(r1 < r2){ |
|
d.dx += 1; |
|
d.dw += .5; |
|
} |
|
if (l1 > r2) { |
|
d.dx = -1; |
|
d.dw = 0; |
|
} |
|
if (r1 < l2){ |
|
d.dx = 1; |
|
d.dw = 0; |
|
} |
|
|
|
d.dy = 0; |
|
d.dh = 0; |
|
float t1 = a.y - a.h/2; |
|
float t2 = b.y - b.h/2; |
|
if (t1 > t2){ |
|
d.dy -= 1; |
|
d.dh += .5; |
|
} |
|
float b1 = a.y + a.h/2; |
|
float b2 = b.y + b.h/2; |
|
if(b1 < b2){ |
|
d.dy += 1; |
|
d.dh += .5; |
|
} |
|
if (t1 > b2) { |
|
d.dy = -1; |
|
d.dh = 0; |
|
} |
|
if (b1 < t2){ |
|
d.dy = 1; |
|
d.dh = 0; |
|
} |
|
return d; |
|
} |
|
|
|
// where c is the smallest box that fully encompases a and b |
|
boxabs box_c(box a, box b) { |
|
boxabs ba = { 0 }; |
|
ba.top = fmin(a.y - a.h / 2, b.y - b.h / 2); |
|
ba.bot = fmax(a.y + a.h / 2, b.y + b.h / 2); |
|
ba.left = fmin(a.x - a.w / 2, b.x - b.w / 2); |
|
ba.right = fmax(a.x + a.w / 2, b.x + b.w / 2); |
|
return ba; |
|
} |
|
|
|
// representation from x, y, w, h to top, left, bottom, right |
|
boxabs to_tblr(box a) { |
|
boxabs tblr = { 0 }; |
|
float t = a.y - (a.h / 2); |
|
float b = a.y + (a.h / 2); |
|
float l = a.x - (a.w / 2); |
|
float r = a.x + (a.w / 2); |
|
tblr.top = t; |
|
tblr.bot = b; |
|
tblr.left = l; |
|
tblr.right = r; |
|
return tblr; |
|
} |
|
|
|
float overlap(float x1, float w1, float x2, float w2) |
|
{ |
|
float l1 = x1 - w1/2; |
|
float l2 = x2 - w2/2; |
|
float left = l1 > l2 ? l1 : l2; |
|
float r1 = x1 + w1/2; |
|
float r2 = x2 + w2/2; |
|
float right = r1 < r2 ? r1 : r2; |
|
return right - left; |
|
} |
|
|
|
float box_intersection(box a, box b) |
|
{ |
|
float w = overlap(a.x, a.w, b.x, b.w); |
|
float h = overlap(a.y, a.h, b.y, b.h); |
|
if(w < 0 || h < 0) return 0; |
|
float area = w*h; |
|
return area; |
|
} |
|
|
|
float box_union(box a, box b) |
|
{ |
|
float i = box_intersection(a, b); |
|
float u = a.w*a.h + b.w*b.h - i; |
|
return u; |
|
} |
|
|
|
float box_iou(box a, box b) |
|
{ |
|
//return box_intersection(a, b)/box_union(a, b); |
|
|
|
float I = box_intersection(a, b); |
|
float U = box_union(a, b); |
|
if (I == 0 || U == 0) { |
|
return 0; |
|
} |
|
return I / U; |
|
} |
|
|
|
float box_giou(box a, box b) |
|
{ |
|
boxabs ba = box_c(a, b); |
|
float w = ba.right - ba.left; |
|
float h = ba.bot - ba.top; |
|
float c = w*h; |
|
float iou = box_iou(a, b); |
|
if (c == 0) { |
|
return iou; |
|
} |
|
float u = box_union(a, b); |
|
float giou_term = (c - u) / c; |
|
#ifdef DEBUG_PRINTS |
|
printf(" c: %f, u: %f, giou_term: %f\n", c, u, giou_term); |
|
#endif |
|
return iou - giou_term; |
|
} |
|
|
|
dxrep dx_box_iou(box pred, box truth, IOU_LOSS iou_loss) { |
|
boxabs pred_tblr = to_tblr(pred); |
|
float pred_t = fmin(pred_tblr.top, pred_tblr.bot); |
|
float pred_b = fmax(pred_tblr.top, pred_tblr.bot); |
|
float pred_l = fmin(pred_tblr.left, pred_tblr.right); |
|
float pred_r = fmax(pred_tblr.left, pred_tblr.right); |
|
|
|
boxabs truth_tblr = to_tblr(truth); |
|
#ifdef DEBUG_PRINTS |
|
printf("\niou: %f, giou: %f\n", box_iou(pred, truth), box_giou(pred, truth)); |
|
printf("pred: x,y,w,h: (%f, %f, %f, %f) -> t,b,l,r: (%f, %f, %f, %f)\n", pred.x, pred.y, pred.w, pred.h, pred_tblr.top, pred_tblr.bot, pred_tblr.left, pred_tblr.right); |
|
printf("truth: x,y,w,h: (%f, %f, %f, %f) -> t,b,l,r: (%f, %f, %f, %f)\n", truth.x, truth.y, truth.w, truth.h, truth_tblr.top, truth_tblr.bot, truth_tblr.left, truth_tblr.right); |
|
#endif |
|
//printf("pred (t,b,l,r): (%f, %f, %f, %f)\n", pred_t, pred_b, pred_l, pred_r); |
|
//printf("trut (t,b,l,r): (%f, %f, %f, %f)\n", truth_tblr.top, truth_tblr.bot, truth_tblr.left, truth_tblr.right); |
|
dxrep dx = { 0 }; |
|
float X = (pred_b - pred_t) * (pred_r - pred_l); |
|
float Xhat = (truth_tblr.bot - truth_tblr.top) * (truth_tblr.right - truth_tblr.left); |
|
float Ih = fmin(pred_b, truth_tblr.bot) - fmax(pred_t, truth_tblr.top); |
|
float Iw = fmin(pred_r, truth_tblr.right) - fmax(pred_l, truth_tblr.left); |
|
float I = Iw * Ih; |
|
float U = X + Xhat - I; |
|
|
|
float Cw = fmax(pred_r, truth_tblr.right) - fmin(pred_l, truth_tblr.left); |
|
float Ch = fmax(pred_b, truth_tblr.bot) - fmin(pred_t, truth_tblr.top); |
|
float C = Cw * Ch; |
|
|
|
// float IoU = I / U; |
|
// Partial Derivatives, derivatives |
|
float dX_wrt_t = -1 * (pred_r - pred_l); |
|
float dX_wrt_b = pred_r - pred_l; |
|
float dX_wrt_l = -1 * (pred_b - pred_t); |
|
float dX_wrt_r = pred_b - pred_t; |
|
|
|
// gradient of I min/max in IoU calc (prediction) |
|
float dI_wrt_t = pred_t > truth_tblr.top ? (-1 * Iw) : 0; |
|
float dI_wrt_b = pred_b < truth_tblr.bot ? Iw : 0; |
|
float dI_wrt_l = pred_l > truth_tblr.left ? (-1 * Ih) : 0; |
|
float dI_wrt_r = pred_r < truth_tblr.right ? Ih : 0; |
|
// derivative of U with regard to x |
|
float dU_wrt_t = dX_wrt_t - dI_wrt_t; |
|
float dU_wrt_b = dX_wrt_b - dI_wrt_b; |
|
float dU_wrt_l = dX_wrt_l - dI_wrt_l; |
|
float dU_wrt_r = dX_wrt_r - dI_wrt_r; |
|
// gradient of C min/max in IoU calc (prediction) |
|
float dC_wrt_t = pred_t < truth_tblr.top ? (-1 * Cw) : 0; |
|
float dC_wrt_b = pred_b > truth_tblr.bot ? Cw : 0; |
|
float dC_wrt_l = pred_l < truth_tblr.left ? (-1 * Ch) : 0; |
|
float dC_wrt_r = pred_r > truth_tblr.right ? Ch : 0; |
|
|
|
// Final IOU loss (prediction) (negative of IOU gradient, we want the negative loss) |
|
float p_dt = 0; |
|
float p_db = 0; |
|
float p_dl = 0; |
|
float p_dr = 0; |
|
if (U > 0) { |
|
p_dt = ((U * dI_wrt_t) - (I * dU_wrt_t)) / (U * U); |
|
p_db = ((U * dI_wrt_b) - (I * dU_wrt_b)) / (U * U); |
|
p_dl = ((U * dI_wrt_l) - (I * dU_wrt_l)) / (U * U); |
|
p_dr = ((U * dI_wrt_r) - (I * dU_wrt_r)) / (U * U); |
|
} |
|
|
|
// GIoU = I/U - (C-U)/C |
|
// C is the smallest convex hull that encloses both Detection and Truth |
|
if (iou_loss == GIOU) { |
|
if (C > 0) { |
|
// apply "C" term from gIOU |
|
p_dt += ((C * dU_wrt_t) - (U * dC_wrt_t)) / (C * C); |
|
p_db += ((C * dU_wrt_b) - (U * dC_wrt_b)) / (C * C); |
|
p_dl += ((C * dU_wrt_l) - (U * dC_wrt_l)) / (C * C); |
|
p_dr += ((C * dU_wrt_r) - (U * dC_wrt_r)) / (C * C); |
|
} |
|
} |
|
|
|
// apply grad from prediction min/max for correct corner selection |
|
dx.dt = pred_tblr.top < pred_tblr.bot ? p_dt : p_db; |
|
dx.db = pred_tblr.top < pred_tblr.bot ? p_db : p_dt; |
|
dx.dl = pred_tblr.left < pred_tblr.right ? p_dl : p_dr; |
|
dx.dr = pred_tblr.left < pred_tblr.right ? p_dr : p_dl; |
|
|
|
return dx; |
|
} |
|
|
|
float box_rmse(box a, box b) |
|
{ |
|
return sqrt(pow(a.x-b.x, 2) + |
|
pow(a.y-b.y, 2) + |
|
pow(a.w-b.w, 2) + |
|
pow(a.h-b.h, 2)); |
|
} |
|
|
|
dbox dintersect(box a, box b) |
|
{ |
|
float w = overlap(a.x, a.w, b.x, b.w); |
|
float h = overlap(a.y, a.h, b.y, b.h); |
|
dbox dover = derivative(a, b); |
|
dbox di; |
|
|
|
di.dw = dover.dw*h; |
|
di.dx = dover.dx*h; |
|
di.dh = dover.dh*w; |
|
di.dy = dover.dy*w; |
|
|
|
return di; |
|
} |
|
|
|
dbox dunion(box a, box b) |
|
{ |
|
dbox du; |
|
|
|
dbox di = dintersect(a, b); |
|
du.dw = a.h - di.dw; |
|
du.dh = a.w - di.dh; |
|
du.dx = -di.dx; |
|
du.dy = -di.dy; |
|
|
|
return du; |
|
} |
|
|
|
|
|
void test_dunion() |
|
{ |
|
box a = {0, 0, 1, 1}; |
|
box dxa= {0+.0001, 0, 1, 1}; |
|
box dya= {0, 0+.0001, 1, 1}; |
|
box dwa= {0, 0, 1+.0001, 1}; |
|
box dha= {0, 0, 1, 1+.0001}; |
|
|
|
box b = {.5, .5, .2, .2}; |
|
dbox di = dunion(a,b); |
|
printf("Union: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh); |
|
float inter = box_union(a, b); |
|
float xinter = box_union(dxa, b); |
|
float yinter = box_union(dya, b); |
|
float winter = box_union(dwa, b); |
|
float hinter = box_union(dha, b); |
|
xinter = (xinter - inter)/(.0001); |
|
yinter = (yinter - inter)/(.0001); |
|
winter = (winter - inter)/(.0001); |
|
hinter = (hinter - inter)/(.0001); |
|
printf("Union Manual %f %f %f %f\n", xinter, yinter, winter, hinter); |
|
} |
|
void test_dintersect() |
|
{ |
|
box a = {0, 0, 1, 1}; |
|
box dxa= {0+.0001, 0, 1, 1}; |
|
box dya= {0, 0+.0001, 1, 1}; |
|
box dwa= {0, 0, 1+.0001, 1}; |
|
box dha= {0, 0, 1, 1+.0001}; |
|
|
|
box b = {.5, .5, .2, .2}; |
|
dbox di = dintersect(a,b); |
|
printf("Inter: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh); |
|
float inter = box_intersection(a, b); |
|
float xinter = box_intersection(dxa, b); |
|
float yinter = box_intersection(dya, b); |
|
float winter = box_intersection(dwa, b); |
|
float hinter = box_intersection(dha, b); |
|
xinter = (xinter - inter)/(.0001); |
|
yinter = (yinter - inter)/(.0001); |
|
winter = (winter - inter)/(.0001); |
|
hinter = (hinter - inter)/(.0001); |
|
printf("Inter Manual %f %f %f %f\n", xinter, yinter, winter, hinter); |
|
} |
|
|
|
void test_box() |
|
{ |
|
test_dintersect(); |
|
test_dunion(); |
|
box a = {0, 0, 1, 1}; |
|
box dxa= {0+.00001, 0, 1, 1}; |
|
box dya= {0, 0+.00001, 1, 1}; |
|
box dwa= {0, 0, 1+.00001, 1}; |
|
box dha= {0, 0, 1, 1+.00001}; |
|
|
|
box b = {.5, 0, .2, .2}; |
|
|
|
float iou = box_iou(a,b); |
|
iou = (1-iou)*(1-iou); |
|
printf("%f\n", iou); |
|
dbox d = diou(a, b); |
|
printf("%f %f %f %f\n", d.dx, d.dy, d.dw, d.dh); |
|
|
|
float xiou = box_iou(dxa, b); |
|
float yiou = box_iou(dya, b); |
|
float wiou = box_iou(dwa, b); |
|
float hiou = box_iou(dha, b); |
|
xiou = ((1-xiou)*(1-xiou) - iou)/(.00001); |
|
yiou = ((1-yiou)*(1-yiou) - iou)/(.00001); |
|
wiou = ((1-wiou)*(1-wiou) - iou)/(.00001); |
|
hiou = ((1-hiou)*(1-hiou) - iou)/(.00001); |
|
printf("manual %f %f %f %f\n", xiou, yiou, wiou, hiou); |
|
} |
|
|
|
dbox diou(box a, box b) |
|
{ |
|
float u = box_union(a,b); |
|
float i = box_intersection(a,b); |
|
dbox di = dintersect(a,b); |
|
dbox du = dunion(a,b); |
|
dbox dd = {0,0,0,0}; |
|
|
|
if(i <= 0 || 1) { |
|
dd.dx = b.x - a.x; |
|
dd.dy = b.y - a.y; |
|
dd.dw = b.w - a.w; |
|
dd.dh = b.h - a.h; |
|
return dd; |
|
} |
|
|
|
dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u); |
|
dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u); |
|
dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u); |
|
dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u); |
|
return dd; |
|
} |
|
|
|
typedef struct{ |
|
int index; |
|
int class_id; |
|
float **probs; |
|
} sortable_bbox; |
|
|
|
int nms_comparator(const void *pa, const void *pb) |
|
{ |
|
sortable_bbox a = *(sortable_bbox *)pa; |
|
sortable_bbox b = *(sortable_bbox *)pb; |
|
float diff = a.probs[a.index][b.class_id] - b.probs[b.index][b.class_id]; |
|
if(diff < 0) return 1; |
|
else if(diff > 0) return -1; |
|
return 0; |
|
} |
|
|
|
void do_nms_sort_v2(box *boxes, float **probs, int total, int classes, float thresh) |
|
{ |
|
int i, j, k; |
|
sortable_bbox* s = (sortable_bbox*)calloc(total, sizeof(sortable_bbox)); |
|
|
|
for(i = 0; i < total; ++i){ |
|
s[i].index = i; |
|
s[i].class_id = 0; |
|
s[i].probs = probs; |
|
} |
|
|
|
for(k = 0; k < classes; ++k){ |
|
for(i = 0; i < total; ++i){ |
|
s[i].class_id = k; |
|
} |
|
qsort(s, total, sizeof(sortable_bbox), nms_comparator); |
|
for(i = 0; i < total; ++i){ |
|
if(probs[s[i].index][k] == 0) continue; |
|
box a = boxes[s[i].index]; |
|
for(j = i+1; j < total; ++j){ |
|
box b = boxes[s[j].index]; |
|
if (box_iou(a, b) > thresh){ |
|
probs[s[j].index][k] = 0; |
|
} |
|
} |
|
} |
|
} |
|
free(s); |
|
} |
|
|
|
int nms_comparator_v3(const void *pa, const void *pb) |
|
{ |
|
detection a = *(detection *)pa; |
|
detection b = *(detection *)pb; |
|
float diff = 0; |
|
if (b.sort_class >= 0) { |
|
diff = a.prob[b.sort_class] - b.prob[b.sort_class]; // there is already: prob = objectness*prob |
|
} |
|
else { |
|
diff = a.objectness - b.objectness; |
|
} |
|
if (diff < 0) return 1; |
|
else if (diff > 0) return -1; |
|
return 0; |
|
} |
|
|
|
void do_nms_obj(detection *dets, int total, int classes, float thresh) |
|
{ |
|
int i, j, k; |
|
k = total - 1; |
|
for (i = 0; i <= k; ++i) { |
|
if (dets[i].objectness == 0) { |
|
detection swap = dets[i]; |
|
dets[i] = dets[k]; |
|
dets[k] = swap; |
|
--k; |
|
--i; |
|
} |
|
} |
|
total = k + 1; |
|
|
|
for (i = 0; i < total; ++i) { |
|
dets[i].sort_class = -1; |
|
} |
|
|
|
qsort(dets, total, sizeof(detection), nms_comparator_v3); |
|
for (i = 0; i < total; ++i) { |
|
if (dets[i].objectness == 0) continue; |
|
box a = dets[i].bbox; |
|
for (j = i + 1; j < total; ++j) { |
|
if (dets[j].objectness == 0) continue; |
|
box b = dets[j].bbox; |
|
if (box_iou(a, b) > thresh) { |
|
dets[j].objectness = 0; |
|
for (k = 0; k < classes; ++k) { |
|
dets[j].prob[k] = 0; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void do_nms_sort(detection *dets, int total, int classes, float thresh) |
|
{ |
|
int i, j, k; |
|
k = total - 1; |
|
for (i = 0; i <= k; ++i) { |
|
if (dets[i].objectness == 0) { |
|
detection swap = dets[i]; |
|
dets[i] = dets[k]; |
|
dets[k] = swap; |
|
--k; |
|
--i; |
|
} |
|
} |
|
total = k + 1; |
|
|
|
for (k = 0; k < classes; ++k) { |
|
for (i = 0; i < total; ++i) { |
|
dets[i].sort_class = k; |
|
} |
|
qsort(dets, total, sizeof(detection), nms_comparator_v3); |
|
for (i = 0; i < total; ++i) { |
|
//printf(" k = %d, \t i = %d \n", k, i); |
|
if (dets[i].prob[k] == 0) continue; |
|
box a = dets[i].bbox; |
|
for (j = i + 1; j < total; ++j) { |
|
box b = dets[j].bbox; |
|
if (box_iou(a, b) > thresh) { |
|
dets[j].prob[k] = 0; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void do_nms(box *boxes, float **probs, int total, int classes, float thresh) |
|
{ |
|
int i, j, k; |
|
for(i = 0; i < total; ++i){ |
|
int any = 0; |
|
for(k = 0; k < classes; ++k) any = any || (probs[i][k] > 0); |
|
if(!any) { |
|
continue; |
|
} |
|
for(j = i+1; j < total; ++j){ |
|
if (box_iou(boxes[i], boxes[j]) > thresh){ |
|
for(k = 0; k < classes; ++k){ |
|
if (probs[i][k] < probs[j][k]) probs[i][k] = 0; |
|
else probs[j][k] = 0; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
box encode_box(box b, box anchor) |
|
{ |
|
box encode; |
|
encode.x = (b.x - anchor.x) / anchor.w; |
|
encode.y = (b.y - anchor.y) / anchor.h; |
|
encode.w = log2(b.w / anchor.w); |
|
encode.h = log2(b.h / anchor.h); |
|
return encode; |
|
} |
|
|
|
box decode_box(box b, box anchor) |
|
{ |
|
box decode; |
|
decode.x = b.x * anchor.w + anchor.x; |
|
decode.y = b.y * anchor.h + anchor.y; |
|
decode.w = pow(2., b.w) * anchor.w; |
|
decode.h = pow(2., b.h) * anchor.h; |
|
return decode; |
|
}
|
|
|